
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2019

Quantifying Uncertainty of Ensemble Transport
and Dispersion Simulations Using HYSPLIT
Daniel W. Bazemore

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Atmospheric Sciences Commons, and the Fluid Dynamics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Bazemore, Daniel W., "Quantifying Uncertainty of Ensemble Transport and Dispersion Simulations Using HYSPLIT" (2019). Theses
and Dissertations. 2197.
https://scholar.afit.edu/etd/2197

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2197?utm_source=scholar.afit.edu%2Fetd%2F2197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


www.manaraa.com

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Quantifying Uncertainty of Ensemble Transport and Dispersion Simulations Using 
HYSPLIT 

 
 

THESIS 
 
 

Daniel W. Bazemore, Captain, USAF 
 

AFIT-ENP-MS-19-M-068 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
DISTRIBUTION STATEMENT A.  

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

 



www.manaraa.com

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.  This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States.



www.manaraa.com

 

AFIT-ENP-MS-19-M-068 
 

QUANTIFYING UNCERTAINTY OF ENSEMBLE TRANSPORT AND DISPERSION  

SIMULATIONS USING HYSPLIT  

 
THESIS 

 
Presented to the Faculty 

Department of Engineering Physics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Atmospheric Science 

 

 

Daniel W. Bazemore, BS 

Captain, USAF 

 

21 March 2019 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



www.manaraa.com

 

AFIT-ENP-MS-19-M-068 

 

QUANTIFYING UNCERTAINTY OF ENSEMBLE TRANSPORT AND DISPERSION  

SIMULATIONS USING HYSPLIT  

 
 
 

Daniel W. Bazemore, BS 

Captain, USAF 

 

Committee Membership: 

 

H. Rose Tseng, Air Force Institute of Technology 
Chair 

 

Robert C. Tournay, Air Force Institute of Technology  
Member 

 

A. Suarez-Mullins, Air Force Technical Applications Center 
Member 

 
 

 
 
 
 
 
 



www.manaraa.com

iv 

AFIT-ENP-MS-19-M-068 
 

Abstract 

Uncertainty associated with determining the source location of nuclear pollutants 

in the atmosphere after a nuclear fallout using a numerical model is difficult to determine.  

Uncertainty can originate from input data (meteorological and emissions), internal model 

error, physics parameterizations, and stochastic processes. This study uses the Hybrid 

Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model with data from the 

1983 Cross Appalachian Tracer Experiment (CAPTEX) (Ferber et al. 1986) and 

simulating six nuclear detonations (Rolph et al. 2014) to quantify and communicate 

uncertainty in ensemble dispersion simulations. This is accomplished by utilizing an 

ensemble of forward trajectory simulations varying initial conditions and physical 

parameterizations (e.g. turbulence, boundary layer stability and mixed layer depth). The 

model rank for each simulation is calculated using ground measurements. This value is 

compared against the observed rank from the CAPTEX experiment to measure the 

sensitivity of each model run. Effectively quantifying and communicating uncertainty is 

crucial in providing probabilistic results in nuclear monitoring. 
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QUANTIFYING UNCERTAINTY OF ENSEMBLE TRANSPORT AND 
DISPERSION SIMULATIONS USING HYSPLIT  

 
Introduction 

General Issue 

Atmospheric transport and dispersion models aim to mathematically estimate the 

behavior of pollutants or contaminates in the atmosphere. These contaminates include, 

but are not limited to, toxic gases, radionuclide, volcanic ash, and other anthropogenic or 

organic aerosols. The use of transport and dispersion models can be applied to 

macrobiotic aerosols; however, these models are of great importance to predict the 

movement of airborne radionuclides for emergency response preparedness. Particulates 

or gasses released during the testing of nuclear explosives and the toxins released from 

nuclear reactor accidents such as Chernobyl or Fukushima pose a significant threat to 

public health. Although modeling these hazards has advanced significantly in the past 80 

years, few efforts have proven fruitful to quantify error in these simulations.  

Problem Statement 

Outcomes from transport and dispersion modeling are subject to a varying degree 

of uncertainties that are difficult to quantify. These uncertainties stem from 

meteorological processes (dependent on meteorology model ingested into the model), 

internal modeling error, and stochastic processes. Most notably, the fundamental 

uncertainty of any transport and dispersion model stems from the parameterizations 

found within its core. These parameterizations seek to characterize the physical 

environment that are either too complex to be resolved or not sufficiently understood 

(Stensrud 2007).  Parameterization schemes are important because they significantly 
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influence model generated forecasts and interact with one other indirectly though their 

changes to model variables (Stensrud 2007).  One of the most valuable tools to expose 

this type of uncertainty is through the use of ensembles. This paper seeks to highlight the 

factors that lead to some of the uncertainty of atmospheric transport and dispersion 

modeling by utilizing an ensemble of forward trajectory simulations with varying initial 

conditions and physical parameterizations (e.g. turbulent velocity, boundary layer 

stability and mixed layer depth).   

Hypotheses 
 

It is hypothesized uncertainty in atmospheric dispersion model predictions is 

associated with: 1) the data ingested into the model, 2) model parameterizations, and 3) 

the stochastic uncertainty associated with the turbulent nature of the atmosphere. The 

data ingested into the model introduces a varying level of uncertainty. This uncertainty is 

assumed to be linked to the horizontal and vertical resolution of the dataset (Rao 2005). 

In this experiment, it is hypothesized finer meteorological model data resolutions more 

accurately predicts the location and timing of pollutants compared to more coarse 

resolutions. Uncertainty also stems from inaccurate treatment of the dynamical and 

chemical processes parameterized within the model (Rao 2005). Due to the relatively 

short term nature of the simulations it is assumed the boundary layer stability and 

turbulence parameterizations will have the greatest effect on uncertainty. The 

uncertainties associated with the data and parameterizations can be minimized by using 

more accurate and representative measurements and improving model dynamics and 

parameterization schemes (Rao 2005). The final factor impacting uncertainty, the 
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stochastic nature of the atmosphere, cannot be minimized by any actions taken by 

scientists because it arises from the natural variability of the atmosphere (Rao 2005). 

Research Objective, Focus and Questions 

This research aims to: 

1. Quantify uncertainty in the long-range atmospheric trajectory and dispersion 

modeling for Cross-Appalachian Tracer Experiment Release 2 (CAPTEX2).  

The model in question is the National Oceanic and Atmospheric Administration 

(NOAA) Air Resources Laboratory’s (ARL) Hybrid Single-Particle Lagrangian Inte-

grated Trajectory (HYSPLIT) model. Output from an ensemble of the model is compared 

against the atmospheric concentrations of a tracer experiment released in the northeast 

United States and southeast Canada, called the Cross-Appalachian Tracer Experiment 

(CAPTEX ’83). The use of five statistical values: Figure of Merit in Space, Correlation 

Coefficient, Fractional Bias, Kolmogorov-Smirnov, and Final Rank are used to compare 

the CAPTEX measured and HYSPLIT predicted concentration values. These statistics 

are used to quantify the uncertainty of the spatial extent of the plume. Furthermore, the 

onset time of the plume at sixty-eight stations from CAPTEX is compared to the onset 

timing computed by the model at the same locations. This timing difference is used to 

quantify the temporal uncertainty of the plume.  

2. Quantify uncertainty in nuclear detonations atmospheric trajectory and 

dispersion modeling.  

HYSPLIT output is compared against the atmospheric concentrations from the 

fallout of stabilized nuclear clouds. The nuclear fallouts are from six detonations tested at 

the Nevada Test site between 1951 and 1957 (Rolph et al. 2014). The five statistical 
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values mentioned above are calculated for an ensemble of each nuclear detonations and 

compared to measured concentrations. Due to the short time span of a stabilized nuclear 

detonation simulation, quantifying uncertainty places emphasis on the figure of merit in 

space.  

Preview 

The organization of this thesis is as follows: Chapter II describes the background 

on the CAPTEX and nuclear fallout from the Nevada Test site data, the history of 

HSYPLIT and explains model calculations and parameterizations; Chapter III describes 

the methodology for this research; Chapter IV presents and analyses the results; Chapter 

V discusses the impacts of this work and concludes this research by presenting 

recommendations for future work in this field.   
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II. Background & Literature Review 

Chapter Overview 

 The purpose of this chapter is to provide background information on the data 

used, procedures practiced, and modeling capabilities utilized in this research. This 

chapter outlines the state of current and relevant research critical to understand the 

findings and conclusions. 

Cross Appalachian Tracer Experiment  

The Cross-Appalachian Tracer Experiment (CAPTEX) was a large scale, bi-

national field study conducted in 1983, the purpose of which was three-fold: 1) it aimed 

to test tracer technology on a 1000-km scale, 2) provide insight into the mechanisms 

involved in long-range transport and dispersion, and 3) provide data to evaluate and 

improve transport and dispersion modeling (Ferber et al. 1986). The experiment was 

conducted from mid-September through October of 1983 across the northeastern United 

States and southeastern Canada. Research was directed by the National Oceanic and 

Atmospheric Administration’s (NOAA) Air Resources Laboratory (ARL) in association 

with scientists from the National Weather Service (NWS) and Department of Energy 

(DOE).  

Research began with the development of a tracer system suitable for the long-

range atmospheric dispersion experiments. The chemically and biologically inert 

perfluoro-monomethyl-cyclohexane ([PMCH]: C7F14) served as the tracer for the 

experiment. In its basic state, PMCH is a clear, colorless liquid and is thermally stable up 

to extreme temperatures (400⁰C) (Ferber et al. 1986). When released as a gas, PMCH is 

harmless and can be accurately measured at extremely low concentrations (3 parts per 
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1015 parts of air). Before release, the PMCH was vaporized and mixed with a stream of 

nitrogen to ensure the tracer was capable of being carried through the atmosphere (Ferber 

et al. 1986).  The N2-PMCH mixture was fully vaporized using a tube furnace kept at 

105⁰ C. From the tube the gas passed through a mass flowmeter where the volume was 

measured and recorded on a flowmeter totalizer and stripchart recorder. The tracer 

reservoir was weighed using both crane scales (capable of measuring 0 – 454 kg) and 

small balances (0 – 40 kg) before and after each release to provide a system of checks on 

the total amount released (Ferber et al.1986).  

In total CAPTEX was composed of six tracer releases: four from Dayton, Ohio, 

and two from Sudbury, Ontario. These locations are identified as key pollutant source 

areas that have a significantly adverse effect on air quality in the northeastern United 

States and southeastern Canada (Ferber et al. 1986). The tracer was released at 10 meters 

above ground level for three consecutive hours. The Dayton releases were conducted in 

the early afternoon to ensure the tracer was vertically well-mixed such that the large scale 

wind pattern advected the tracer over the sampling network. The Sudbury releases 

occurred in the early morning hours after the passage of cold fronts that provided 

northwesterly winds which brought the plume over the sampling networks. 

After release, automatic sequential air samplers at 86 ground stations collected six 

consecutive air samples ranging from three to six hours long. The sampling sites were 

located in approximately 100-km arc intervals from the source location, ranging from 300 

km to 1100 km (Figure 1). The first number in the three digit site identifier represents the 

distance on the arc away from Dayton in hundreds of kilometers. The remaining two 

digits represent the position along the arc from south to north. The spacing of the 



www.manaraa.com

7 

samplers along each arc was approximated based on an expected two plume standard 

deviations pattern (Ferber et al.1986). The spacing increases linearly with distance from 

the release site. The number of sampling locations on the 800-km arc was doubled to 

provide more detailed plume structure. In total, nearly 3000 samples were collected from 

the network of ground stations.  

For this research, the second CAPTEX release (CAPTEX2) was chosen as the 

verification for the computer model simulations. CAPTEX2 was released at Dayton 

International Airport (39.90⁰N, 84.05⁰W) on September 25, 1983. 201 kg of PMCH was 

released from 1705-2005 UTC and measured at 68 sites across the northeast United 

States and southeast Canada (Table 1). Focus is placed on CAPTEX2 to thoroughly 

investigate the uncertainty.  

 

 Figure 1: Network of ground based sensors from the CAPTEX2 experiment. Release site of 
CAPTEX2 was Dayton, Ohio. 
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Table 1. CAPTEX2 Sampling Sites 

Site # Site Name Elevation (m, MSL) Latitude (⁰N) Longitude (⁰W) 

306 Steubenville, OH 303 40.38 -80.63 

308 Lisbon, OH 333 40.77 -80.75 

310 Akron-Canton AP, OH 369 40.92 -81.43 

312 Hiram, OH 375 41.30 -81.15 

314 Cleveland, OH 235 41.42 -81.87 

316 Oberlin, OH 249 41.30 -82.22 

318 Norwalk, OH 204 41.27 -82.62 

320 Fremont, OH 183 41.33 -83.12 

402 Somerset, PA 640 40.00 -79.08 

404 Blairsville, PA 561 40.43 -79.15 

406 Kittanning Lock, PA 241 40.82 -79.53 

408 Clarion, PA 340 41.20 -79.43 

410 Titusville, PA 372 41.63 -79.70 

412 Erie, PA 223 42.08 -80.18 

452 Long Point, ON 175 42.60 -80.5 

454 Port Stanley, ON 213 42.67 -81.15 

456 Wilkesport, ON 183 42.70 -82.35 

502 Saxton, PA 238 40.20 -78.25 

504 Tyrone, PA 265 40.67 -78.23 

508 Bradford, PA 652 41.80 -78.63 

510 Little Valley, NY 480 42.25 -78.8 

512 Gowanda, NY 262 42.48 -78.93 

552 Vineland, ON 79 43.18 -79.40 

554 Milton, ON 221 43.52 -79.92 
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Site # Site Name Elevation (m, MSL) Latitude (⁰N) Longitude (⁰W) 

602 York, PA 119 39.92 -76.75 

604 Newport, PA 116 40.48 -77.13 

608 Westfield, PA 61 41.98 -77.57 

612 Pavilion, NY 287 42.88 -78.03 

614 Batavia, NY 278 43.03 -78.18 

652 Bowmanville, ON 99 43.92 -78.67 

653 Peterborough A., ON 191 44.23 -78.37 

654 Coldwater, ON 280 44.62 -79.53 

702 Reading, PA 82 40.37 -75.93 

703 Chester, NJ 289 40.78 -74.67 

704 Freeland, PA 580 41.02 -75.90 

706 Montrose, PA 475 41.83 -75.87 

708 Ithaca, NY 293 42.45 -76.45 

710 Clyde, NY 128 43.07 -76.83 

752 Bloomfield, ON 91 43.98 -77.22 

753 Kaladar, ON 244 44.68 -77.15 

754 Campbellford, ON 175 44.28 -77.78 

802 Pemberton, NJ 16 39.93 -74.70 

803 Wertsville, NJ 49 40.45 -74.80 

804 West Wharton, NJ 223 40.90 -74.6 

805 High Point Park, NJ 430 41.30 -74.67 

806 Mongaup Valley, NY 380 41.63 -74.80 

807 Downsville Dam, NY 396 42.08 -74.97 

808 Oneonta, NY 427 42.47 -75.07 

810 Griffiss AFB, NY 148 43.23 -75.40 
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Site # Site Name Elevation (m, MSL) Latitude (⁰N) Longitude (⁰W) 

812 Watertown, NY 97 44.00 -76.02 

852 Charleston Lake, ON 92 44.48 -76.03 

902 Merrick, NY 6 40.67 -73.52 

904 Yorktown Heights, NY 204 41.27 -73.80 

908 Broadalbin, NY 256 43.05 -74.20 

910 Newcomb, NY 506 43.97 -74.10 

912 Norfolk, NY 70 44.80 -75.00 

952 Angers, ON 94 45.55 -75.52 

102 Providence, RI 16 41.73 -71.43 

107 Gorham, NH 261 44.40 -71.18 

108 Newport, VT 234 44.93 -72.20 

152 St. Zephirin, ON 52 46.07 -72.58 

002 Greenport, NY 5 41.10 -72.37 

006 Wardsboro, VT 424 43.03 -72.80 

008 Cornwall, VT 150 43.95 -73.22 

010 Ellenburg Depot, NY 262 44.90 -73.80 

052 St. Hyppolite, ON 366 45.98 -74.00 

 

 

High pressure over the northeastern United States controlled the meteorological 

conditions during CAPTEX2. Light winds across the eastern United States forced the 

plume to disperse widely across the northeast United States and southeast Canada (Figure 

2).  

 

Table 1: CAPTEX 2 ground measurement sites (Ferber et al. 2014) 
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Nuclear Detonation Cases 

 CAPTEX data is useful to quantify uncertainty of atmospheric transport and 

dispersion on large scale synoptic flow (~1100 km); however CAPTEX doesn’t 

necessarily represent the environmental conditions of a nuclear detonation. For this 

reason, the second goal of this project is to complete an ensemble for six nuclear 

detonations to test the sensitivity of model parameterizations on detonation environments.  

 In total, the United States conducted 928 atmospheric underground nuclear tests at 

the Nevada Test Site between 1951 and 1992 (Rolph et al. 2014). The Nevada Test Site, a 

1375 square mile stretch of desert located 90 miles northwest of Las Vegas, Nevada, is 

owned and operated by the Department of Energy. For the purpose of this research, six 

Figure 2: Sea level pressure at the surface average between 12Z and 18Z on 25 September 
1983 across the United States. The CAPTEX 2 plume was released at 1705Z. A high pressure 
system was positioned over the eastern United States with light winds aloft which allowed the 
plume to disperse widely across the receptor field (Earth System Research Laboratory 2019).  
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nuclear detonations are simulated by HYSPLIT (Figure 3). These six cases were chosen 

based upon their relatively small nuclear yield (<50 kT) and proximity to the surface. All 

were detonated close to, but above, the surface except Buster-Jangle Sugar which was 

detonated at the surface (Rolph et al. 2014). Furthermore, these six cases produced 

pollutant plume that stretched far downwind, which made them ideal to test the 

uncertainty of the dispersion of these clouds.  

 

 

Buster-Jangle Sugar Shot 

The first and smallest nuclear detonation used in this study was the Buster-Jangle 

Sugar shot. This 1.2-kiloton (kT) device was detonated at 1700 UTC on November 19, 

1951. The cloud produced by the detonation reached 4572 m mean sea level (MSL) and 

created a crater 6 m deep and 27 m across (Rolph et al. 2014).  At the time of detonation, 

a high pressure system was located to the east in Colorado (Figure 4) with a low pressure 

Figure 3: Nuclear experiment Sugar (1.2 kT yield), Easy (12 kT), Annie (16 kT), Harry (32 kT), 
Simon (43 kT), and Smoky (44 kT) test sites (Earth System Research Laboratory 2019).  
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center off northwestern United Sates (not depicted on figure). Surface winds were 

reported at 1 m/s from the south, 16 m/s from the south-southwest at 3200 m MSL, and 

21 m/s from the south-southwest at 4250 m MSL.  

  

  

 

 

Tumbler-Snapper Easy Shot 

 The second nuclear detonation, Tumbler-Snapper Easy, occurred on May 7, 1952 

at 1215 UTC. This 12-kT detonation was conducted from a 91-m tower and produced a 

plume that extended 10 km MSL. Winds near the surface were calm at the time of 

d

 

b

 

a

 

c

 

Figure 4: Geopotential heights in meters from the NCAR/NCEP Reanalysis dataset at the (a) 
300-hPa, (b) 500-hPa, (c) 700-hPa, and (d) 925-hPa at the time of the Sugar detonation (19 

November 1951 at 1700 UTC). 
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detonation, 18 m/s from the south at 3000 m MSL, and from the south-southwest at 34 

m/s at 5800 m MSL. As the day progressed, winds at the surface increased with 

occasional gusts of 25 m/s. Light precipitation associated with a stationary front and low-

pressure system in the area was reported in the region, including the regions where the 

plume extended (Figure 5).   

  

  

 

 

 

 

Figure 5: Geopotential heights in meters from the NCAR/NCEP Reanalysis dataset at the (a) 
300-hPa, (b) 500-hPa, (c) 700-hPa, and (d) 925-hPa at the time of the Easy detonation (7 May 

1952 at 1215 UTC). 
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Upshot-Knothole Annie Shot 

 On March 17, 1953, at 1320 UTC, Upshot-Knothole Annie was detonated from a 

91-m tower. This 16-kT detonation was the first of elevation shots in the Upshot-

Knothole Operation. The nuclear cloud tops was observed to reach an elevation of 12,500 

m MSL. The test’s intent was to study the effect of the nuclear blast on houses, 

automobiles and other man-made items (Rolph et al. 2014). At the time of detonation, the 

wind direction varied from southwest to the west from the surface up to 15,000 m MSL.  

  

  

 

Figure 6: Geopotential heights in meters from the NCAR/NCEP Reanalysis dataset at the (a) 
300-hPa, (b) 500-hPa, (c) 700-hPa, and (d) 925-hPa at the time of the Easy detonation (17 

March 1953 at 1320 UTC). 
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The presence of a cold front near the Nevada Test Site led to a strong gradient of wind 

speed between 2500 m and 2700 m MSL; there were no reports of precipitation in the 

region (Figure 6).  

Upshot-Knothole Simon Shot 

 Upshot-Knothole Simon occurred on April 25, 1953, at 1230 UTC. The 43-kT 

yield detonation was two and a half times the size of Annie and was one of the largest 

near-surface detonations ever at the Nevada Test Site. Like Annie, Simon was shot from 

a 91-m tower with cloud tops that reached 13,000 m MSL. Surface winds at the time of 

detonation were 3 m/s from the north-northwest with light winds extending up to 2,500 m 

MSL. Above 2,500 m MSL winds remained from the west-northwest increasing in speed 

throughout the column associated with an upper level low (Figure 7). There were no 

reports of precipitation. The sea level pressure at the surface indicates the test site was in 

a cull region at the time of the experiment (Figure 7). 

 

  

b
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Upshot-Knothole Harry Shot 

 The ninth of eleven shots in the Upshot-Knothole Operation was Harry. This 32- 

kT yield detonation was conducted on a 91-m tower on May 19, 1953, at 1205 UTC. The 

cloud from Upshot-Knothole Harry Shot reached 13,000 m MSL. At the time of launch, 

surface winds were from the north-northeast at 7 m/s. From the height of the burst to 

4,500 m MSL wind speeds varied from 7 m/s to 13 m/s from the southwest. Above 4,500 

m MSL winds were out of the west-northwest from 15 m/s to 40 m/s. There were no 

reports of precipitation over the test site; however there were reports of precipitation 

immediately downwind. It is believed this precipitation did not lead to deposition of the 

radioactive material directly downwind of the site; however in the northern and eastern 

extent of the plume deposition is believed to have occurred because of rainfall. The sea 

level pressure indicates a weak trough at the surface (Figure 8).  

 

 

Figure 7: Geopotential heights in meters from the NCAR/NCEP Reanalysis dataset at the (a) 
300-hPa, (b) 500-hPa, (c) 700-hPa, and (d) 925-hPa at the time of the Simon detonation (25 

April 1953 at 1230 UTC). 
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Plumbbob Smoky Shot 

 The largest of the six detonation studied in this research was Plumbbob Smoky. 

This 44-kT detonation was conducted from a 195-m tower at 1230 UTC on August 31, 

1957. Smoky was launched from this height in an attempt to minimize the amount of 

fallout immediately downwind of the launch site. At the time of the Smoky detonation, an 

upper level low was centered over northern Nevada and northern Utah (Figure 9). This 

low supported a 925-hPa low centered over the intersection of the borders of California, 

Figure 8: Geopotential heights in meters from the NCAR/NCEP Reanalysis dataset at the (a) 
300-hPa, (b) 500-hPa, (c) 700-hPa, and (d) 925-hPa at the time of the Harry detonation (19 May 

1953 at 1205 UTC). 
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Arizona, and Mexico. Winds below 1580 m MSL were calm with winds from 1580 m 

MSL to 4500 m MSL from the north at 2 m/s to 5 m/s. Winds above 4500 m MSL were 

reported from the west-northwest at 5 m/s to 25 m/s. There are no reports of precipitation 

at the test site; however, rain was reported downstream in the plume which is believed to 

contribute to deposition of the nuclear cloud.  

  

  

 

 

 

 

Figure 9: Geopotential heights in meters from the NCAR/NCEP Reanalysis dataset at the (a) 
300-hPa, (b) 500-hPa, (c) 700-hPa, and (d) 925-hPa at the time of the Smoky detonation (31 

August 1957 at 1230 UTC). 
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Meteorological Models  

Model Background 

Numerical weather prediction (NWP) models are computer software programs 

that employ physics-governing equations to describe fluid dynamics. These equations, 

combined with numerical methods and parameterizations, are used to characterize the 

current and future state of the atmosphere (Warner 2011). The first NWP models were 

simplified versions of the equations of motions and fluid dynamics and were applied to a 

small region of the globe (Stensrud 2007). The first of these models was created by 

Cahrney, Fyortolft, and von Neumann who produced a one-day forecast using a one-layer 

barotropic model. Over the next 70 years atmospheric scientists worked together to create 

and amend NWP models. Their goal was two-fold: 1) The first objective was to create 

models capable of predicting atmospheric conditions for communities across the globe, 2) 

Their second purpose was to create models for use by research communities to further 

their understanding of the atmosphere.  

As with most atmospheric transport and dispersion models, HYSPLIT is sensitive 

to the accuracy and quality of the meteorological data ingested into the model. The 

available meteorological data model chosen for this research is the Weather Research and 

Forecasting Model (WRF).  

Weather Research and Forecasting Model 

The WRF Model is a non-hydrostatic mesoscale numerical weather prediction 

system created for both atmospheric research and operational forecasting applications 

(NCAR 2006). WRF contains physics parameterizations that are based on actual 
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atmospheric conditions. These parameterizations work together to simulate atmospheric 

behavior.  

For the CAPTEX simulations, the WRF model, obtained from ARL, was 

configured with horizontal resolutions of 27-km, 9-km, 3-km (nested in the 9-km). The 

varying horizontal resolutions were used to test the sensitivity of atmospheric dispersion 

modeling on the resolution of the meteorological model ingested. This version of WRF 

3.2 uses the Yonsei University (YSU) planetary boundary layer (PBL) scheme. This 

nonlocal scheme is like previously constructed schemes, such as the Medium-Range 

Forecast (MRF) Model scheme; however, YSU represents entrainment at the top of the 

PBL explicitly (Hong et al. 2006). The YSU scheme more accurately simulated deeper 

vertical mixing in buoyancy-driven boundary layer environments with shallower mixing 

in strong-wind regimes compared to other PBL schemes, such as the MRF scheme (Hong 

et al. 2006). On the other hand, the YSU over-deepens the PBL for springtime deep 

convective environments (Coniglio et al. 2013). In these environments the YSU scheme 

results in too much dry air near the surface and an underestimation of the mixed layer 

convective available potential energy (MLCAPE) in deep convective atmosphere 

conditions.  

Pertaining to the nuclear detonation simulations, data from the global 

NCEP/NCAR Reanalysis Project (NNRP) is available. NNRP data is a product of the 

combined efforts between NOAA National Centers for Environmental Prediction (NCEP) 

and the National Center for Atmospheric Research (NCAR). NNRP data is on a 2.5⁰ 

global latitude-longitude grid with a temporal resolution of six hours (Rolph et al.2014). 

Vertically, there are 17 pressure levels between 1000 hectopascals (hPa) and 10 hPa. The 
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data is originally in GRIB format; therefore it has been converted to a HYSPLIT 

compatible form.  

Atmospheric Transport and Dispersion 

The rate at which atmospheric transport and dispersion of pollutants occur is a 

product of three main meteorological processes. Immediately following release, 

pollutants are carried from their release site by the mean wind velocity field (Draxler and 

Hess 1988). As the plume progresses through the atmosphere, smaller-scale turbulent 

processes within the mean wind flow work to disperse the pollutant (Draxler and Hess 

1988). The final force affecting the plume is the process of deposition. Deposition is 

classified into two overarching types: dry or wet. Dry deposition is the process by which 

atmospheric gases and particles are transferred to the surface as a result 

of random turbulent air motions  and  sedimentation (Wesley 1989). Wet deposition is 

defined as the removal of atmospheric gases or particles through their incorporation 

into hydrometeors, which are then lost by precipitation (Draxler and Hess 1998). 

Transport and dispersion models vary on how they handle these processes depending on 

their complexity and assumptions. The two most common modeling schemes to compute 

the time history of air pollutant concentrations are the Eulerian and Lagrangian 

approaches (Draxler and Hess 1998). The type of contamination scenario often dictates 

which framework is more advantageous.  

Eulerian models aim to solve for the advection and diffusion of a pollutant in a 

single equation on a fixed grid. This approach is typically applied to complex emissions 

scenarios which require solution at all grid points (Draxler and Hess 1998). Scenarios 

requiring the use of an Eulerian model include cases with contaminants sourced from 
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multiple locations or varying times. For this purpose, Eulerian methods require emissions 

to be defined on the same scale as the models computational grid.  

On the other hand, Lagrangian models use a moving frame of reference, 

calculating the advection and diffusion equations independently from one another. This 

framework is favored when a pollutant can be traced back to a single-point source 

(Draxler and Hess 1998). This single-point source restricts the advection and dispersion 

calculations to be computed at only a few grid points; however this also means the 

Lagrangian models can define emissions at any resolution.  

Hybrid Single-Particle Lagrangian Integrated Trajectory Model History 

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model 

is capable of computing simple parcel trajectories to more complex transport, dispersion, 

chemical transformation, or deposition simulations. In previous research endeavors, 

HYSPLIT was used to model atmospheric trajectories of pollutants including: radioactive 

material, wildfire smoke, wind-blown dust, allergens and volcanic ash (Stein et al. 2015).  

HYSPLIT’s lineage can be traced back to 1949 when the Special Project Section 

(SPS) of the U.S. Weather Bureau was charged with detecting radioactive debris 

originating from Soviet nuclear test sites. The SPS generated hand-calculated back 

trajectories following 500 hPa heights assuming a horizontal geostrophic flow. Assuming 

a steady state with homogeneous and stationary turbulence, air concentrations were 

estimated based on wind data collected from radiosonde balloon measurements twice 

daily (Stein et al. 2015). This work laid the foundation for ARL’s trajectory and 

dispersion modeling capabilities.  
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In the late 1960s and early 1970s, ARL scientists developed the Mesoscale 

Diffusion Model in response to health and safety concerns at the Idaho National Reactor 

Testing Station (NRTS). The purpose of their work was to build upon their current 

transport and dispersion capabilities by incorporating changing weather conditions into 

planned or accidental releases of radioactive material into the atmosphere (Start & 

Wendell 1974). Scientists used a segmented Gaussian puff model using gridded data 

interpolated from a network of 21 tower-mounted wind sensors located within the 

boundaries of the NRTS to account for spatial variability of the horizontal wind flow near 

the surface. Their simulations incorporated time-varying diffusion rates in an attempt to 

model changing environments. Further advances in trajectory modeling occurred during 

the mid-1970s and 1980s when ARL researchers computed trajectories for concentrations 

of gaseous and particulate emissions using the Volcanic Ash Forecast and Dispersion 

(VAFTAD) Model (Heffter et al. 1993). Particles were modeled with an Eulerian 

advection technique using tri-linear interpolations of gridded horizontal wind components 

and vertical velocities. VAFTAD was expanded on previous trajectory approaches as it 

considered the deposition of falling particles from the ash cloud.  

In the early 1980s, HYSPLIT version 1 was developed. In its initial version, 

segmented pollutants puffs were released near the surface and their trajectories followed 

for several days. This model differed from the previous experiment as it incorporated 

subdividing the daytime and nocturnal phase into separate trajectories to accurately 

depict the PBL. Transport was calculated solely from wind observations from rawinsonde 

data taken twice daily. The assumptions for these calculations included no vertical 

mixing over the planetary boundary layer (PBL) during the day while nocturnal wind 
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shear was modeled by vertically splitting the puffs that extended throughout the PBL into 

300-m subpuffs (Draxler 1982). The second version of HYSPLIT interpolated 

rawinsonde and other observed data to estimate the vertical mixing coefficients that vary 

in space and time (Stein et al. 2015). HYSPLIT version 3 brought about the shift from 

using rawinsonde observations to utilizing gridded output from meteorological models. 

The model allowed for trajectory calculations to be completed using cylindrical puffs that 

grow with time and split when reaching the grid size of the meteorological data (Stein et 

al. 2015). Furthermore, HYSPLIT version 3 was the first version to incorporate chemistry 

into the model by introducing the chemical formation and deposition of sulfate.  

HYSPLIT is currently on version 4 (HYSPLIT4). This version serves as the 

model used for this research. HYSPLIT4 takes a hybrid approach when calculating 

various components of a pollutant. It utilizes a Lagrangian approach (moving frame of 

reference) to calculate the advection, dispersion, and deposition of a pollutant. The model 

allows for the user to choose different Lagrangian approaches where the air masses being 

transported can be represented as three-dimensional particles, puffs or a hybrid of both 

(Stein et al. 2015). Moreover, HYSPLIT4 employs an Eulerian approach (stationary 

three-dimensional reference frame) to calculate the chemical transformations and 

pollutant concentrations.  
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HYSPLIT Dynamics and Parameterizations 

 Parameterization is the process of emulating the effects of physical processes  

implicitly when they cannot be included explicitly by the governing equations or 

numerical methods (Warner 2011). Parameterization schemes are based on physical or 

statistical representations, but they both lead to error being introduced into the model. 

Physical parameterization error stems from the constraints of simulating a complex 

process into a simplified process. Statistical parameterizations error is when the model 

assumes a given process will occur in a certain percentage of cases when in actuality they 

may not. The following sections describe the model grids, parameterizations and 

calculations; all of which contribute a varying degree of error.  

Meteorological Data Assimilation and Grids 

 HYSPLIT’s grid is determined by the grid of the meteorological data passed into 

the model. Before these fields can be used by HSYPLIT some pre-processing must occur. 

Most meteorological models use some variation of a terrain following (𝜎𝜎) coordinate 

system; however, the data fields are usually interpolated to a variety of vertical 

coordinate systems prior to output (Draxler and Hess 1998). HYSPLIT is able to use a 

Figure 10: Timeline of HYSPLIT’s development (Stein et al. 2015) 
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variety of meteorological data sources as input; therefore, the profiles of the 

meteorological data at each horizontal grid points are linearly interpolated to a terrain 

following coordinate system,  

     𝜎𝜎 = 1 − 𝑧𝑧
𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡

     (1) 

where 𝑧𝑧 is the height relative to the terrain and 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 is the top of HYSPLIT’s 

coordinate system (Draxler and Hess 1998). This conversion helps HYSPLIT maintain 

flexibility with data ingest. The model is capable of ingesting four different vertical 

coordinate systems: pressure-sigma, absolute-pressure, terrain-sigma, or a hybrid 

absolute-pressure sigma.  

The dispersion model’s horizontal grid system is determined by that of the 

meteorological input data (Draxler and Hess 1998). HYSPLIT supports three map 

projections: Polar Stereographic, Mercator, and Lambert Conformal. A simulation may 

contain multiple meteorological files, each with different grids and projections. For 

example, a simulation may start at a small, fine (regional) grid resolution to calculate 

precise concentration levels close to the source location and then switch to a larger, 

coarser (global) resolution further away to save on computational expense. This 

relationship is determined by: 

    𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚∆𝑡𝑡 < 0.75     (2) 

where 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum transport velocity from the previous hour in grid-

units per minute and ∆𝑡𝑡 is the dynamic time step. HYSPLIT will choose either the 

meteorological data grid or the user-defined grid to complete all calculations, whichever 

one is finer, provided the product between 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑡𝑡  does not exceed 0.75. 
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HYSPLIT’s flexibility to accomplish calculations on multiple model grids makes the 

model an ideal choice for transport and dispersion simulations. The downside in creating 

a model capable of ingesting various meteorological files is the plume forecast is only as 

accurate as the inputted meteorological data. Any error found in the weather forecast will 

be applied and propagated in HYSPLIT’s forecast.  

At a minimum, HYSPLIT requires the meteorological data ingested into the 

model to include the horizontal wind components (𝑈𝑈 and 𝑉𝑉), temperature (𝑇𝑇), height (𝑍𝑍) 

or pressure (𝑃𝑃), and the pressure at the surface (𝑃𝑃𝑡𝑡). If wet deposition is included in the 

simulation, the meteorological model’s rainfall field is required. Ground level winds      

(≤ 10 m) are available in most meteorological models; however if these fields are not 

included HYSPLIT will estimate them using a logarithmic profile for neutral conditions 

(Draxler and Hess 1998).  

Vertical Motion  

Most meteorological models contain a vertical motion field relative to the model’s 

native terrain following coordinate system. HSYPLIT uses this field to determine vertical 

velocity in its trajectory and dispersion calculations (Draxler and Hess 1998). If the 

vertical motion field is missing, or the desired simulation requires vertical motion to 

follow another surface, HYSPLIT has the option to replace this field. Vertical velocity 

(𝑊𝑊𝜂𝜂) of a parcel on a selected surface(𝜂𝜂) is computed from: 

   𝑊𝑊𝜂𝜂 =
−
𝛿𝛿𝜂𝜂
𝛿𝛿𝑡𝑡
−𝑢𝑢

𝛿𝛿𝜂𝜂
𝛿𝛿𝑥𝑥
−𝑣𝑣

𝛿𝛿𝜂𝜂
𝛿𝛿𝑦𝑦

𝛿𝛿𝜂𝜂
𝛿𝛿𝑧𝑧

         (3) 
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given the slope of the surface and its local rate of change. The surface (𝜂𝜂) can be defined 

as isobaric (𝑝𝑝), isosigma (𝜎𝜎), isopynic (𝜌𝜌), and isentropic (𝜃𝜃).  

Transport & Advection Calculation 

Once the horizontal and vertical components (𝑈𝑈, 𝑉𝑉, and 𝑊𝑊𝜂𝜂) have been 

interpolated to the internal model grid, the advection equation is calculated. This equation 

is used to explicitly solve for the particle or puffs position as it travels across the grid. 

The advection of a particle or puff is computed from the average of the three-dimensional 

velocity vectors, 𝑉𝑉, at the particle’s initial and first guess position (Draxler and Hess 

1998). The velocity vectors are linearly interpolated in both space and time. The first 

guess position, 𝑃𝑃′(𝑡𝑡 + ∆𝑡𝑡), is calculated by:  

    𝑃𝑃′(𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃(𝑡𝑡) +  𝑉𝑉(𝑃𝑃, 𝑡𝑡)∆𝑡𝑡                (4) 

where 𝑃𝑃(𝑡𝑡) is the particle’s initial position, 𝑉𝑉(𝑃𝑃, 𝑡𝑡) is the velocity vector at the initial 

position and ∆𝑡𝑡 is the time step. This first guess is used to calculate the final position.  

  𝑃𝑃(𝑡𝑡 + ∆𝑡𝑡) =  𝑃𝑃(𝑡𝑡) + 1
2

[𝑉𝑉(𝑃𝑃, 𝑡𝑡) +  𝑉𝑉(𝑃𝑃′, 𝑡𝑡 + ∆𝑡𝑡)]∆𝑡𝑡                  (5) 

where 𝑉𝑉(𝑃𝑃′, 𝑡𝑡 + ∆𝑡𝑡) is the velocity vector at the first guess position. The trajectory 

calculation is terminated if the particle or plume intersects the top of the model; however, 

the advection of the pollutant will continue along the ground it intersects the surface 

(Draxler and Hess 1998). The time step, ∆𝑡𝑡, can vary during the simulation. HYSPLIT 

will optimize the integration time step based on the grid size and maximum particle 

advection speed, but the advection distance per time step should be less than 0.75 of the 

meteorological grid spacing.  

Dispersion Calculation 
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HYSPLIT can compute the air concentration either as a series of puffs with each 

containing a fraction of the overall mass of the pollutant or a release of many particles of 

the source of the simulation (Draxler and Hess 1998). This two-way approach is possible 

because HYSPLIT is a Lagrangian model. In the puff approach, the puff is advected 

according to the trajectory of its center position. The puff expands horizontally 

throughout time to account for the dispersive nature of the atmosphere. The puff will split 

when it exceeds the size of the grid space (Draxler and Hess 1998). Grid-scale processes 

are simulated by the puff-splitting process while sub-grid processes are modeled by the 

turbulent dispersion parameterization. The concentration of a specific grid space is thus 

the factional mass of the puff it contains. One downside to the puff approach is that it can 

create too many puffs, especially in the vertical direction, if the mixing is strong.   

In the particle approach, the advection of the particle is determined by the random 

component of the motion of the atmosphere turbulence at that point in time. The air 

concentrations are calculated by adding the mass of all the particles in a grid cell. In the 

vertical dimension, it is advantageous to treat the pollutant as a particle in order to better 

capture the greater inhomogeneity of the vertical structure of the atmosphere (Draxler and 

Hess 1998). Ultimately, the most accurate representation of the dispersion of a pollutant 

is to treat it as a particle in the vertical direction and puff in the horizontal direction. 

Particles are more accurately represented in the vertical where discontinuities may be 

large. Puffs in the horizontal limit the number or particles required to adequately 

represent the horizontal distribution.  

 In both the particle and puff approaches the dispersion of the pollutant is 

parameterized by adding a turbulent component on to the mean velocity from the 
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meteorological data (Air Resource Laboratory 2018). The final position of the 

pollutant, 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓, in the particle approach after the turbulent component, 𝑉𝑉′, is added to 

position that was calculated by the mean flow, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓, is:  

  𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓(𝑡𝑡 +  ∆𝑡𝑡) =  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓(𝑡𝑡 +  ∆𝑡𝑡) +  𝑉𝑉′(𝑡𝑡 +  ∆𝑡𝑡) ∆𝑡𝑡                 (6) 

The turbulent component is calculated from the previous time step’s turbulent 

component, and auto-correlation coefficient, and Lagrangian time scale, 𝑇𝑇𝐿𝐿𝑓𝑓: 

  𝑉𝑉′(𝑡𝑡 +  ∆𝑡𝑡) =  𝑅𝑅(∆𝑡𝑡)𝑉𝑉′(𝑡𝑡) +  𝑉𝑉′′(1 − 𝑅𝑅(∆𝑡𝑡)2)1/2                    (7) 

where: 

    𝑅𝑅(∆𝑡𝑡) =  exp (−∆t
TLi

 )                                                    (8) 

and 𝑉𝑉′′ is the Gaussian random component which is derived from a computer-generated 

random number and the standard deviation of the velocity, 𝜎𝜎𝑣𝑣.  

 The horizontal dispersion of a puff is parameterized by the puff growth rate when 

the puff’s horizontal distribution standard deviation, 𝜎𝜎ℎ, is smaller than the grid size. The 

standard deviation of the velocity defines the growth rate (Air Resources Laboratory 

2018): 

     𝜎𝜎𝑉𝑉 = 𝑑𝑑𝜎𝜎ℎ
𝑑𝑑𝑡𝑡

                                                              (9) 

when the horizontal puff size is larger than the grid spacing, and thus must be split, the 

model resolves the dispersion explicitly (Draxler and Hess 1998). The method for 

splitting the puff depends on selection of a Top-Hat or Gaussian distributed puff. A Top-

Hat distributed puff assumes a uniform concentration within 1.5 standard deviations (𝜎𝜎) 

of the center and zero outside. A Gaussian distributed puff assumes a normal distribution 
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of concentration about the center over 3𝜎𝜎 (Air Resources Laboratory 2018). Figure 11 is 

a representation of a cross section of how the concentration of mass is about the axis. 

 

 

 

In the Top-Hat approach, the puff splits into four equal puffs of equal mass (25% of the 

original puff’s mass). In the Gaussian approach, the puff splits into five new puffs with 

the center puff containing 60% of the original puff mass and the remaining four outside 

puffs each receive 10% of the original mass (Draxler and Hess 2018).  

Concentration Calculation 

 The concentration calculation is dependent on whether the particle, Top-Hat puff, 

or Gaussian puff, is present within a grid cell. The single particle of mass, 𝑚𝑚, in a 3-D 

grid space concentration is determined by: 

     ∆𝑐𝑐 = 𝑚𝑚
∆𝑚𝑚∆𝑦𝑦∆𝑧𝑧

                                                      (10) 

The incremental concentration by each Top-Hat puff of mass, 𝑚𝑚, to a grid point is 

defined by: 

Figure 11: The concentration distribution about the axis of the mean trajectory for a Top-
Hat (red) and Gaussian (green) puff. The horizontal axis is the number of 𝜎𝜎 while the 

vertical axis is the density function (Air Resource Laboratory 2018)  
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     ∆𝑐𝑐 = 𝑚𝑚
(𝜋𝜋𝑟𝑟2∆𝑧𝑧)

                                                     (11) 

where the horizontal radius (𝑟𝑟) is 1.54𝜎𝜎ℎand the vertical extent, ∆𝑧𝑧, is 3.08𝜎𝜎𝑧𝑧 where 𝜎𝜎𝑧𝑧 is 

the standard deviation of the puff’s vertical distribution (Draxler and Hess 2018). All grid 

nodes within the Top-Hat puff receive the same ∆𝑐𝑐. The incremental concentration 

contribution for a Gaussian puff is defined by: 

    ∆𝑐𝑐 =  𝑚𝑚
(2𝜋𝜋𝜎𝜎ℎ2∆𝑧𝑧)

 exp (−0.5𝑚𝑚2

𝜎𝜎ℎ
2 )                                    (12)            

 where 𝑥𝑥 is the distance from the puff’s center to the grid-node and ∆𝑧𝑧 is defined as the 

grid-cell height.                   

Mixing Layer Height 

 There are four main approaches utilized by HYSPLIT to estimate the mixing layer 

height. The default (and preferred way) is to use the mixing layer depth (𝑍𝑍𝑓𝑓) provided by 

the meteorological model. If the meteorological model does not include the required 

field, the second approach, the vertical temperature profile, will be used to estimate the 

height. It is assumed the mixing layer height is equal to height at which the potential 

temperature first exceeds the temperature of the ground by a value of 2K. The 

temperature profile is analyzed from the top down in an attempt to reduce the influence 

of shallow stable layers near the ground. In this approach, a minimum depth of 250 m is 

assumed for all hours because this level corresponds to the minimum height resolution of 

most meteorological input data. The downside of this approach is nighttime depths are 

overestimated for most geographic locations. The third approach to mapping the mixing 

layer is to calculate its depth from the turbulent kinetic energy (TKE) profile provided by 

the meteorological model. The depth is estimated to be the height at which the TKE 
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profile either decreases by a factor of two or falls below the threshold of 0.21. In this 

research, the inputted WRF model does not include the required fields to calculate the 

depth from the TKE profile; therefore the model defaults to calculating the height from 

the temperature profile. The final approach is to set a constant value for the depth of the 

boundary layer. It is important to note if a user desires to estimate 𝑍𝑍𝑓𝑓 either through the 

first or third approach, it is critical the meteorological model include the required fields, 

if not HYSPLIT will default to the second approach.  

Boundary Layer Stability 

 There are two main approaches to estimate the boundary layer stability. The 

preferred method is to use the surface heat and momentum fluxes. When these fields are 

available from the inputted meteorological model, the friction velocity, 𝑢𝑢∗, is computed 

either from the scalar exchange coefficient, 𝐸𝐸.  

     𝑢𝑢∗ = �𝐸𝐸𝑢𝑢
𝜌𝜌
�
0.5

                                                    (13) 

where 𝐸𝐸 is: 

     𝐸𝐸 =  𝜌𝜌𝐶𝐶𝐷𝐷                                                           (14) 

where 𝐶𝐶𝐷𝐷 is the drag coefficient and the product of 𝐸𝐸 and 𝑢𝑢 equivalent to stress due to 

that drag. The other option is compute the friction velocity directly from the vector 

momentum fluxes,𝐹𝐹. 

     𝑢𝑢∗ = �|−𝐹𝐹|
𝜌𝜌
�
0.5

                                           (15) 

The friction temperature in the boundary layer is computed from the sensible heat flux, 

𝐻𝐻.  



www.manaraa.com

35 

     𝑇𝑇∗ =  − 𝐻𝐻
(𝜌𝜌𝐶𝐶𝑡𝑡𝑢𝑢∗)

                                         (16) 

where 𝐶𝐶𝑡𝑡 is the heat constant (1005 J kg-1 K-1) for dry air. Using these values the stability 

parameter for the planetary boundary layer can be defined as: 

     𝑧𝑧
𝐿𝐿

=  𝑍𝑍2𝑘𝑘 𝑔𝑔 𝑇𝑇∗ �𝑢𝑢∗2𝑇𝑇2�
−1

                             (17) 

where 𝑍𝑍2 indicated the height of the 2nd model level, which is assumed to be the depth of 

the surface layer.  

When no fluxes are included in the meteorological model, a stability parameter is 

estimated from the wind (U) and temperature (T) profiles through the calculation of the 

bulk Richardson Number. This parameterization is labeled in the model as the “Boundary 

Layer Stability from the UT Profile.” A meteorological sounding is used to compute the 

bulk Richardson Number, which is defined as: 

   𝑅𝑅𝑏𝑏 = 𝑔𝑔 ∆𝜃𝜃 ∆𝑧𝑧 {𝜃𝜃12[(∆𝑈𝑈)2 +  (∆𝑉𝑉)2]}−1                         (18) 

where Δ indicates a gradient between levels one and two and 𝜃𝜃12 is the layer averaged 

virtual potential temperature. From there, the friction velocity and friction temperature 

are then determined by: 

    𝑢𝑢∗ = 𝑘𝑘 𝑧𝑧2 ∆𝑈𝑈 (𝜑𝜑𝑚𝑚∆𝑧𝑧)−1                  (19) 

    𝑇𝑇∗ = 𝑘𝑘 𝑧𝑧2 ∆𝜃𝜃 (𝜑𝜑ℎ∆𝑧𝑧)−1                                     (20) 

where 𝑘𝑘 is the von Karman’s constant (𝑘𝑘 ≈ 0.4) and the stability dependent normalized 

profiles (𝜑𝜑) for momentum (𝑚𝑚) and heat (ℎ) for a stable surface layer is 0 ≤ 𝑧𝑧
𝐿𝐿
 ≤ 10 

(Beljaars and Holtslag 1991) and in an unstable surface layer is -2 ≤ 𝑧𝑧
𝐿𝐿
 ≤ 0 (Kadar and 

Perepelkin 1989).  
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Horizontal and Vertical Turbulence  

 Before the horizontal and vertical turbulence and mixing can be determined, the 

boundary layer depth (𝑍𝑍𝑓𝑓) must be computed using one of the four approaches mentioned 

above in the boundary layer depth section. When the momentum and heat fluxes are 

available from the inputted meteorological data, the default approach to compute 

turbulence is from stability parameters. This approach uses the Kanthar-Clayson 

equations: 

    𝑤𝑤′2 = 3.0𝑢𝑢∗2 �1 − 𝑧𝑧
𝑍𝑍𝑖𝑖
�
3
2                                            (21) 

    𝑢𝑢′2 = 4.0𝑢𝑢∗2 �1 − 𝑧𝑧
𝑍𝑍𝑖𝑖
�
3
2                                             (22) 

    𝑣𝑣′2 = 4.5𝑢𝑢∗2 �1 − 𝑧𝑧
𝑍𝑍𝑖𝑖
�
3
2                          (23) 

where the turbulent velocities are a function of the friction velocity, height and boundary 

layer depth. In this approach the horizontal and vertical components are explicitly 

predicted and are the default method of determining turbulence.  

Turbulence can also be parameterized in terms of the vertical diffusivity for heat 

by:  

     𝐾𝐾𝑧𝑧 = 𝑘𝑘 𝑤𝑤ℎ 𝑧𝑧 �1 − 𝑧𝑧
𝑍𝑍𝑖𝑖
�
2

                                 (24) 

where 𝑤𝑤ℎ (Equation 25) is the stability parameter and is a function of the friction 

velocity, Monin-Obukhov length, and convective velocity scale (𝑤𝑤∗) (Troen and Mahrt 

1986) and (Holtslag and Boville 1993).  
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     𝑤𝑤ℎ = 𝑓𝑓(𝑢𝑢∗, 1
𝐿𝐿

,𝑤𝑤∗)                 (25) 

This parameterization is labeled in HYSPLIT as “Vertical Turbulence from Beljaars-

Holtslag.” In this approach the vertical diffusivity profile is converted to a turbulence 

value by: 

     𝜎𝜎𝑤𝑤 = �𝐾𝐾ℎ
𝑇𝑇𝐿𝐿
�
0.5

                       (26) 

The horizontal turbulence components are assumed to be equal to the vertical component 

     𝑤𝑤′2 = 𝑢𝑢′2 +  𝑣𝑣′2                    (27) 

The two approaches listed above are the defaults for determining the horizontal 

turbulence; however the horizontal turbulence can be replaced by a value computed from 

the deformation of the velocity field. This is accomplished by: 

 𝐾𝐾ℎ = 2−0.5(𝑐𝑐 𝑋𝑋)2 � � �𝛿𝛿𝑉𝑉
𝛿𝛿𝑚𝑚
� +  �𝛿𝛿𝛿𝛿

𝛿𝛿𝑌𝑌
��

2
+ ��𝛿𝛿𝛿𝛿

𝛿𝛿𝑚𝑚
� − �𝛿𝛿𝑉𝑉

𝛿𝛿𝑦𝑦
��

2

�
0.5

          (28) 

where 𝑋𝑋 is the meteorological grid size, and 𝑐𝑐 = 0.14 (Smagorinsky 1963; Deardorff 

1973).  

If the turbulence is undefined by the user, HYSPLIT will select the optimum 

method (dependent on the fields available in the meteorological data) (ARL 2018). In this 

research, horizontal turbulence undefined will default to calculating the horizontal 

turbulence from the deformation of the velocity field.  

Horizontal and Vertical Mixing 

Similar to the horizontal turbulence approach above, the horizontal mixing 

coefficient (𝐾𝐾ℎ) can be computed from the deformation velocity by:   
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 𝐾𝐾ℎ = 2−0.5(𝑐𝑐 𝑋𝑋)2 � � �𝛿𝛿𝑉𝑉
𝛿𝛿𝑚𝑚
� +  �𝛿𝛿𝛿𝛿

𝛿𝛿𝑌𝑌
��

2
+ ��𝛿𝛿𝛿𝛿

𝛿𝛿𝑚𝑚
� − �𝛿𝛿𝑉𝑉

𝛿𝛿𝑦𝑦
��

2

�
0.5

          (29) 

 During convective conditions, vertical mixing through the inversion layer at 𝑧𝑧 =

 𝑍𝑍𝑓𝑓 is computed based upon the surface flux parameters and the strength of the inversion 

by:  

    𝐾𝐾𝑧𝑧 =  −𝐶𝐶𝑠𝑠 𝑢𝑢∗ 𝑇𝑇∗ �𝛿𝛿𝛿𝛿
𝛿𝛿𝑧𝑧
�
−1

                                     (30) 

where 𝐶𝐶𝑠𝑠 = 0.4 (Beljaars and Betts 1993).  

During stable conditions the vertical mixing is defined by the vertical diffusivity 

for heat using the mixing length theory by: 

   𝐾𝐾𝑧𝑧 = 𝑙𝑙2 �𝛿𝛿𝑉𝑉
𝛿𝛿𝑧𝑧
�  𝜑𝜑ℎ �

𝑓𝑓
𝐿𝐿𝑡𝑡
�
−1

                                       (31) 

where 𝑙𝑙 is the Blackadar-type mixing length proportional to height above ground and 𝐿𝐿𝑡𝑡 

is the local Obukhov length.  

 Near-field concentrations depend more on the individual details of the mixing 

profile while far field results depend more on the average mixing over the boundary 

layer. HYSPLIT is intended to be applied for long-range simulations; therefore there 

must be a unified approach to average the boundary layer mixing. This is accomplished 

by a single average value being determined for the boundary layer at each horizontal grid 

point. Each horizontal grid point will have a different value, all of which are combined 

together to map the boundary layer.   

Deposition 
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Gases and aerosols have the potential to be removed from the pollutant plume 

through deposition (wet or dry) and radioactive decay (only if the pollutants are 

radioactive) (Draxler and Hess 1998). The total deposition in a plume is the summation 

of the removal constants. Dry deposition occurs when the plume intersects with the 

surface layer (advection of the pollutant will continue along the ground it intersects the 

surface). In HYSPLIT the surface layer is assumed to be to be second layer of the 

meteorological data. The removal constant is determined by: 

     𝛽𝛽𝑑𝑑𝑟𝑟𝑦𝑦 = 𝑉𝑉𝑑𝑑
∆𝑍𝑍𝑡𝑡

                                                        (32) 

where 𝑉𝑉𝑑𝑑 is the deposition velocity and ∆𝑍𝑍𝑡𝑡 is the depth of the pollutant layer (assumed 

to be the surface layer for dry removal. 𝑉𝑉𝑑𝑑 is either defined as the gravitational settling 

velocity (defined by the user) or calculated by adding the resistances of the particles in 

the surface layer (Draxler and Hess 1998).  

 Wet deposition occurs when the plume interacts with cloudy air or when 

precipitation falls through the particles. Removal is computed using the scavenging ratio, 

𝑆𝑆𝑟𝑟 ,  for in-cloud processes (Draxler and Hess 1998). The in-cloud removal constant is 

determined by: 

     𝛽𝛽𝑓𝑓𝑓𝑓𝑖𝑖 = 𝐹𝐹𝑡𝑡𝐹𝐹𝑏𝑏𝑆𝑆𝑟𝑟𝑃𝑃𝑟𝑟
∆𝑍𝑍𝑡𝑡

                                                 (33) 

where 𝐹𝐹𝑡𝑡 is the faction of the pollutant layer that is below the cloud top, 𝐹𝐹𝑏𝑏 is the fraction 

of the pollutant layer that is above the cloud base, and 𝑃𝑃𝑟𝑟 is the precipitation rate (Draxler 

and Hess 1998). The scavenging coefficient for below cloud is represented by 𝑆𝑆𝑖𝑖. This 

coefficient is used to calculate the below cloud removal constant:  
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     𝛽𝛽𝑏𝑏𝑚𝑚𝑓𝑓 =  𝑆𝑆𝑖𝑖(1 − 𝐹𝐹𝑏𝑏)                                        (34) 

 The above equations describe wet deposition for particles; however wet 

deposition for gases is treated separately. Deposition of gases depends on the gas’ 

solubility. For inert gases such as PMCH, used in CAPTEX, the deposition is a function 

of Henry’s Law constant (𝐻𝐻). 𝐻𝐻 is a ration of the gas’ equilibrium concentration in water 

to its concentration in air (Draxler and Hess 1998). The removal constant is determined 

from the surface to the top of the cloud layer and is defined as:  

     𝛽𝛽𝑔𝑔𝑚𝑚𝑠𝑠 = 𝐹𝐹𝑡𝑡𝐻𝐻 𝑅𝑅 𝑇𝑇 𝑃𝑃𝑟𝑟

∆𝑍𝑍𝑡𝑡
                                              (35) 

where 𝑅𝑅 is the universal gas constant, and 𝑇𝑇 is the temperature of the air (Draxler and 

Hess 1998). As mentioned previously, the total deposition of a plume is the summation of 

the removal constants. This is determined by: 

  𝐷𝐷𝑇𝑇𝑡𝑡𝑡𝑡𝑚𝑚𝑓𝑓 = 𝑚𝑚{1 − exp�−∆𝑡𝑡�𝛽𝛽𝑑𝑑𝑟𝑟𝑦𝑦 + 𝛽𝛽𝑓𝑓𝑓𝑓𝑖𝑖 +  𝛽𝛽𝑏𝑏𝑚𝑚𝑓𝑓 +  𝛽𝛽𝑔𝑔𝑚𝑚𝑠𝑠��}    (36) 

where 𝑚𝑚 is the mass of the pollutant particle or puff.  

 Radioactive decay alone does not result in deposition; however deposited 

radioactive pollutants decay. The decay constant for radioactive matter, 𝛽𝛽𝑟𝑟𝑚𝑚𝑑𝑑, is 

determined from its half- life,𝑇𝑇1
2
, defined as: 

     𝛽𝛽𝑟𝑟𝑚𝑚𝑑𝑑 = ln(2)
𝑇𝑇1
2

                                                      (37) 

and the radioactive decay of the pollutant’s mass is determined by: 

    𝑚𝑚2 =  𝑚𝑚1exp (−𝛽𝛽𝑟𝑟𝑚𝑚𝑑𝑑∆𝑡𝑡)         (38) 
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III. Methodology 

Chapter Overview  

The purpose of this chapter is to describe the data in this research as well as the 

methodology for quantifying the spatial and temporal uncertainty in HYSPLIT’s 

transport and dispersion simulations. This chapter describes how the datasets were 

obtained and created as well the methods of exposing the uncertainty within the sets. 

CAPTEX Data 

 During CAPTEX2, 201 kg of PMCH was released from Dayton, OH between 

1705 and 2005 on September 25, 1983. Over the next 68 hours the plume was detected 

and measured at 68 stations in the northeast United Sates and southeast Canada. The 

ARL compiled a file containing the 395 concentration measurements. This dataset was 

retrieved from ARL and served as the true measured data to be compared to the model’s 

output. The measured CAPTEX file contains the time/date each sample was taken, the 

station ID number, the latitude and longitude of the observation, and the PMCH 

concentration level.  

HYSPLIT CAPTEX Data 

 There are three overarching objectives in conducting an ensemble of the 

CAPTEX2 simulations. The first objective is to study the uncertainty in transport and 

dispersion modeling by testing the sensitivity of HYSPLIT on the resolution of the 

meteorology model ingested. To meet this goal the horizontal resolution of the 

meteorological model ingested into HYSPLIT, the WRF, will be run at a nested 3-km 

(coupled with 9-km), 9-km, and 27-km resolution. The WRF files were obtained from 

ARL. The second objective is to study the uncertainty in transport and dispersion 
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modeling by testing the sensitivity of HYPLIT on the resolution of concentration gird. 

For every meteorological model HYSPLIT’s concentration gird will be set to a 1.0⁰ x 1.0⁰ 

and 0.25⁰ x 0.25⁰. The last objective is to study the uncertainty associated with 

HYSPLIT’s parameterization schemes. To accomplish this task thirty HYSPLIT 

parameterizations and initial conditions is tested for every meteorological model 

resolution and concentration grid. In total 198 model runs will be completed (see Table 2 

for list of parameterizations and initial conditions).  

Release 
Height 

Horizontal  & 
Vertical Turbulence 

Boundary Layer (BL) 
Stability & 

Mixing Layer (ML) 

Vertical 
Motion 

Other 

- 0m 

- 10m 

- 100m 

- 500m 

- 

1000m 

- 

2000m 

- 

5000m 

- Horizontal Turbulence 

From Variance  

- Horizontal Turbulence 

From Velocity Deformation  

- Horizontal Turbulence 

Undefined (defaulted to 

Velocity Deformation) 

- Vertical Turbulence From  

Beljaars-Holtslag  

- Vertical Turbulence  From 

TKE Field  

- Vertical Turbulence  From 

Variance  

- Vertical Turbulence  From 

Kanthar-Clayson  

- BL Stability from UT 

Profile  

- ML Constant at 

1500m  

- ML From Temperature  

- ML From TKE Field  

- ML Remapped to BL 

Average  

- Average Data  

- Constant Density 

- Damped Magnitude  

- From Divergence  

- Isentropic  

- Isobaric  

- Isosigma  

- Remapped From 

MSL to AGL  

- Gaussian Puff  

- Gaussian Particle  

- Top Hat Puff  

- Top Hat Particle  

- Puff Growth 

Empirical  

- Dry Deposition 

 

Nuclear Cases Data 
Table 2: List of parameterizations varied for each model simulation, organized by overarching model category. 

Each parameterization is run using both the 1.0⁰ x 1.0⁰ and 0.25⁰ x 0.25⁰ concentration gird coupled with the 3-km, 
9-km or 27-km WRF. In total 198 model runs are completed.  
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This research builds upon on work conducted by Rolph et al. (2014) who modeled 

the dispersion, deposition, and decay of nuclear debris from six detonations at the Nevada 

Test site in the 1950s. Rolph et al. (2014) attempted to calculate the radioactive dose rates 

using HYSPLIT and compare these dose rate patterns to the six nuclear tests. Their goal 

was to use current research on nuclear source term to parameterize HYSPLIT so it can 

produce a realistic estimate of the magnitude and pattern of deposition. The six nuclear 

detonations in question are relatively small nuclear devices, with yields <50 kT (Rolph et 

al. 2014). It is assumed HSYPLIT would not be used to model the initial nuclear cloud 

growth, but instead simulate the cloud has stabilized before proceeding with the transport, 

dispersion and deposition of the plume (Rolph et al. 2014). Stabilization occurs after the 

temperature of the nuclear cloud is in equilibrium with the surrounding ambient air 

temperature. When this occurs entrainment of the surrounding outside air will end and the 

cloud will cease to grow vertically. Within the cloud nuclear particles have formed by 

three main processes: 1) directly by fission reaction, 2) by the condensation of vaporized 

material lofted from the surface, and 3) vaporized components of the device. The nuclear 

particles settle through the atmosphere at the particle’s fall velocity. This velocity is 

based upon the size, shape and density of the particle. In this research, all particles are 

assumed to be spherical with a density of 2.5 g/cm3.  

 To simulate the nuclear activity after cloud growth, the typical mushroom shape 

nuclear cloud is adapted using a technique called ARL Fallout Prediction Technique 

(AFPT). AFPT assumes the cloud is cylinder and divided into six layers from the surface 

to the top of the stabilized nuclear cloud (Figure 12). The thickness and height of every 

layer is dependent on the nuclear yield of the detonation and is determined by linearly 
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interpolating between the top and bottom cap (NATO 2010 Operations Manual) and 

between the surface and bottom of the cap. Figure 12 shows an example of the six layers 

of a 10-kT explosion. The layers range from 1700 m thick near the surface (non-shaded 

boxes) to 1000 m thick at the top of the cap (shaded boxes).  

 

 

 

HYSPLIT Nuclear Cases Data  

The main objective of Rolph et al. 2014 was to use current research on nuclear 

source term to parameterize HYSPLIT so it can produce a realistic estimate of the 

magnitude and pattern of deposition. Rolph et al. (2014) was successful in reproducing 

the general direction and deposition patterns of the six nuclear detonations listed above; 

therefore, their HYSPLIT set-up and configuration files were accessed through ARL and 

applied in this research. The set-up and configuration files were amended to test the 

sensitivity of the nuclear detonations on HYSPLIT’s parameterization schemes. In total 

150 simulations were completed (25 for each nuclear shot) (Table 3).  

Figure 12: HYSPLIT representation of a nuclear mushroom cloud with the total 
activity fraction of the 10 kT explosion in each vertical segment (Hefffter 1969). 

The shaded layers define the cap of the nuclear cloud.  
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Horizontal  & 
Vertical Turbulence 

Boundary Layer (BL) 
Stability & 

Mixing Layer (ML) 

Vertical 
Motion 

Other 

- Horizontal Turbulence 

From Variance  

- Horizontal Turbulence 

From Velocity Deformation  

- Horizontal Turbulence 

Undefined (defaulted to 

Velocity Deformation)  

- Vertical Turbulence From  

Beljaars-Holtslag  

- Vertical Turbulence  From 

TKE Field  

- Vertical Turbulence  From 

Variance  

- Vertical Turbulence  From 

Kanthar-Clayson  

- BL Stability from UT 

Profile  

- ML Constant at 1500m  

- ML From Temperature  

- ML From TKE Field  

- ML Remapped to BL 

Average 

 

- Average Data  

- Constant Density 

- Damped Magnitude  

- From Divergence  

- Isentropic  

- Isobaric  

- Isosigma  

- Remapped From 

MSL to AGL  

- Gaussian Puff  

- Gaussian Particle  

- Top Hat Puff  

- Top Hat Particle  

- Puff Growth 

Empirical  

 

 

 

 HYSPLIT was configured to simulate the transport and dispersion of the nuclear 

material for the six nuclear cases with yields ranging from 1.2 kT to 44 kT and stabilized 

cloud tops implied to reach between 3,700 m and 12,500 m AGL. The model was 

centered over the Nevada Test Site. After each HYSPLIT simulation is completed, the 

resulting deposition is converted to a dose rate with a fixed decay time of 12 hours 

Table 3: List of parameterizations varied for each model simulation, organized by overarching model 
category. Each parameterization is run for the six nuclear detonations, Simon, Smoky, Sugar, Easy, 

Annie, and Harry. In total 150 simulations are completed  
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following detonation. The HYSPLIT predicted doses are compared to measured dose 

rates obtained from ARL.  

HYSPLIT Statistics (CC, FB, FMS, KSP, Final Rank) Calculations  

 HYSPLIT calculates rank, a statistical parameter  that evaluates and compare 

forecasted predicted concentration values to measured or observed concentration values. 

Rank encapsulates four statistical factors and renders a single value to compare forecasts 

with:- Correlation Coefficient (CC), Fractional Bias (FB), Figure of Merit in Space 

(FMS), and the Kolmogorov-Smirnov Parameter (KSP). These five values map are the 

key to quantifying the spatial accuracy of an each simulation.  

Correlation Coefficient  

The correlation coefficient is defined by: 

    𝐶𝐶𝐶𝐶 =  ∑ (𝑀𝑀𝑖𝑖− 𝑀𝑀�)(𝑃𝑃𝑖𝑖− 𝑃𝑃�)
�∑(𝑀𝑀𝑖𝑖− 𝑀𝑀�)2 ∑(𝑃𝑃𝑖𝑖− 𝑃𝑃�)2

                                    (39) 

where 𝐶𝐶𝐶𝐶 is the correlation coefficient, 𝑀𝑀𝑓𝑓 is the individual data point measured 

concentration, 𝑀𝑀�  is the average measured concentration, 𝑃𝑃𝑓𝑓 is the individual data point 

model predicted concentration, 𝑃𝑃� is the average model predicted concentration. This 

factor ranges in value from negative one to positive one where zero indicates no 

correlation and + (-) indicates a positive (negative) linear relationship between the two 

data sets.   

Fractional Bias 

The fractional bias is defined by:  

     𝐹𝐹𝐹𝐹 = 2 (𝑃𝑃�−𝑀𝑀�)
(𝑃𝑃�+𝑀𝑀�)

                                                   (40) 
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where FB is the fractional bias. Fractional bias values range from negative two to positive 

two where zero indicated no bias. Negative values indicate an under prediction of 

concentrations and positive values indicate an over prediction of concentrations.  

Figure of Merit in Space 

The figure of merit in space is defined by: 

     𝐹𝐹𝑀𝑀𝑆𝑆 = 100 �𝑁𝑁𝑡𝑡∩ 𝑁𝑁𝑚𝑚�
(𝑁𝑁𝑡𝑡∪ 𝑁𝑁𝑚𝑚)

                                   (41) 

where FMS is the figure of merit in space, 𝑁𝑁𝑡𝑡  is the number of samplers with a model 

predicted concentration greater than zero, 𝑁𝑁𝑚𝑚  is the number of samplers with measured 

concentration greater than zero, 𝑁𝑁𝑡𝑡 ∩  𝑁𝑁𝑚𝑚  is the intersection of samplers with positive 

model predicted and measured concentration values, and 𝑁𝑁𝑡𝑡 ∪  𝑁𝑁𝑚𝑚  is the union of all 

samplers with positive concentration values. Values are a percentage and indicate the 

degree of overlap between the measured and predicted pollutant clouds. Higher 

percentages are desired, as this indicates the model forecast matched well with measured 

concentrations.  

Kolmogorov-Smirnov Parameter 

The Kolmogorov-Smirnov parameter is defined by: 

    𝐾𝐾𝑆𝑆𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑥𝑥|𝐷𝐷(𝑀𝑀𝑘𝑘) − 𝐷𝐷(𝑃𝑃𝑘𝑘)|                           (42) 

where KSP is the Kolmogorov-Smirnov parameter, 𝐷𝐷(𝑀𝑀𝑘𝑘) is the cumulative distribution 

of the measured concentrations across a range of values 𝑘𝑘, and 𝐷𝐷(𝑃𝑃𝑘𝑘) is the cumulative 

distribution of the model predicted concentrations across a range of values 𝑘𝑘. The KSP 

identifies and quantifies the maximum difference between the two cumulative 

distributions and is a measure of how well the model reproduces the measured 
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concentration distribution. It is represented as a percentage, with lower percentages 

indicating high quality forecasts, or more similar cumulative distribution between the 

predicted and measured concentration values.  

Final Rank 

The final rank is defined by:  

  𝑅𝑅𝑀𝑀𝑅𝑅𝑘𝑘 = 𝐶𝐶𝐶𝐶2 +  1 −  �𝐹𝐹𝐹𝐹
2
� + 𝐹𝐹𝑀𝑀𝑆𝑆

100
+  (1 − 𝐾𝐾𝑆𝑆𝑃𝑃

100
)                          (43) 

where rank is the normalized sum of the four statistical factors described above. Each 

statistical factor is given equal weight, where a value of one in each term represents an 

ideal forecast. Final rank values ranges from zero (worst) to four (best). Rank 

encompasses the correlation between the measured and predicted data, any bias in 

concentration forecast, how well the measured and predicted pollutant areas match up 

and the maximum difference between the cumulative distributions.  

 The built-in model utility is used to calculate these statistics, however before the 

ensemble varying the parameterizations is conducted each calculation is verified using 

MATLAB. Using CAPTEX measured data, the control case from the 3-km, 9-km, and 

27-km WRF using a one degree and quarter degree concentration grid simulation is 

accomplished. The five statistics are computed using the measured and predicted 

datasets. Table 4 and 5 show no significant discrepancies between the model calculated 

and MATLAB calculated statistics; therefore, it is concluded the statistical output from 

HYSPLIT can be used with confidence.   
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 FB CC FMS KSP Rank 

WRF3-KM-HYSPLIT -0.15 0.64 72.47 7 2.98 

WRF3-KM-MATLAB -0.149 0.647 72.44 7 2.97 

WRF9-KM-HYSPLIT -0.16 0.66 70.73 6 3.01 

WRF9-KM-MATLAB -0.157 0.66 70.91 6 3.02 

WRF27-KM-HYSPLIT -0.31 0.65 70.71 9 2.98 

WRF27-KM-MATLAB -0.303 0.654 70.95 9 2.97 

 

 

 

 FB CC FMS KSP Rank 

WRF3-KM-HYSPLIT -0.43 0.69 57.83 12 2.72 

WRF3-KM-MATLAB -0.441 0.688 57.80 12 2.71 

WRF9-KM-HSYPLIT -0.42 0.70 58.36 14 2.72 

WRF9-KM-MATLAB -0.425 0.694 58.33 14 2.72 

WRF27-KM-HYSPLIT -0.55 0.65 60.12 10 2.65 

WRF27-KM-MATLAB -0.55 0.647 60.0 10 2.65 

 

 

Timing Error Calculations 

 Uncertainty in atmospheric transport and dispersions models is not only a 

measure of how accurate the model depicts the location of a pollutant in the x-y-z sphere 

(described by the five statistical values above), but must also include the timing a 

Table 4: Comparison of Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space 
(FMS), Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 control case 

from HYSPLIT and MATLAB.  Each run was completed using a 0.25 ⁰ x 0.25⁰ concentration grid. 

Table 5: Comparison of Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space 
(FMS), Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 control case 

from HYSPLIT and MATLAB.  Each run was completed using a 1.0⁰ x 1.0⁰ concentration grid. 
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pollutant was first observed at that location. To accomplish this, MATLAB was utilized 

to separate the CAPTEX measured data and HSYPLIT output data into individual .txt 

files organized by station identifier and the parameterization being tested. The calculation 

seen in Equation 44 is applied to every station. 

  |𝑂𝑂𝑅𝑅𝑂𝑂𝑂𝑂𝑡𝑡 𝑇𝑇𝑇𝑇𝑚𝑚𝑂𝑂𝐶𝐶𝐶𝐶𝑃𝑃𝑇𝑇𝐸𝐸𝐶𝐶 −  𝑂𝑂𝑅𝑅𝑂𝑂𝑂𝑂𝑡𝑡 𝑇𝑇𝑇𝑇𝑚𝑚𝑂𝑂𝐻𝐻𝑌𝑌𝑆𝑆𝑃𝑃𝐿𝐿𝐻𝐻𝑇𝑇|                          (44) 

The time stamp when PMCH was first detected at each station during CAPTEX 

(measured data) was compared to the time stamp when PMCH was calculated at each 

station by HYSPLIT (predicted data). This data describes which parameterization 

(boundary layer stability, turbulence scheme, release height, etc), meteorological model 

resolution, and concentration grid best determines the onset timing at each station with 

the measured data. 
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IV. Analysis and Results 

Chapter Overview: 

 The purpose of this chapter is to evaluate and convey the results from the 

atmospheric transport and dispersion uncertainty studies. These results include the 

statistical and timing error results from CAPTEX2 as well as the statistical results from 

the stabilized nuclear fallout cases. Lastly, this chapter will communicate the success rate 

of HYSPLIT in the CAPTEX2 simulations.  

CAPTEX Statistical Results 

 The five statistical rankings: Fractional Bias (FB), Correlation Coefficient (CC), 

Figure of Merit in Space (FMS), Kolmogorov-Smirnov Parameter (KSP), and Final Rank 

was computed by HYSPLIT for the 198 model runs. HYSPLIT's statistics for the 0.25⁰ x 

0.25⁰ concentration grid can be seen in Tables 6 (3-km), 7 (9-km) and 8 (27-km) while 

the statistics for the 1.0⁰ x 1.0⁰ concentration grid are displayed in Tables 9 (3-km), 10 (9-

km), and 11 (27-km).  

WRF-3km 
0.25 x 0.25 Deg 

Concentration Grid 
Fractional 

Bias 
Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Control Case -0.15 0.64 72.47 7 2.98 

Isobaric -0.58 0.61 71.02 9 2.70 
Isentropic -0.60 0.58 74.67 15 2.64 
Constant Density -0.95 0.53 68.44 12 2.37 
Isosigma -0.43 0.59 70.33 9 2.75 
From Divergence -0.17 0.62 69.92 9 2.9 
Remap MSL to AGL -0.37 0.64 71.49 10 2.84 
Vertical From Average 
Data 

-0.15 0.64 72.47 7 2.98 

Damped Magnitude -0.15 0.64 72.47 7 2.98 
Vertical Turbulence - 
Beljaars-Holtslag  

0.57 0.62 69.58 10 2.70 
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 Vertical Turbulence -  
Kanthar-Clayson 

-0.15 0.64 72.47 7 2.98 

Vertical Turbulence - 
TKE Field 

-0.15 0.64 72.47 7 2.98 

Vertical Turbulence - 
Variance 

-0.15 0.64 72.47 7 2.98 

Horizontal Turbulence - 
Velocity Deformation 

0.00 0.42 72.03 11 2.78 

Horizontal Turbulence -  
Undefined – Defaulted 
to Velocity Deformation 

0.00 0.42 72.03 11 2.78 

Horizontal Turbulence -
Variance 

-0.15 0.64 72.47 7 2.98 

BL Stability from U/T 
profile 

-0.45 0.81 70.70 10 3.03 

Vertical Mixing 
replaced by PBL 
average 

-0.29 0.54 70.33 9 2.76 

Mixed Layer from temp 
profile 

-0.11 0.65 70.56 8 2.99 

Mixed Layer from TKE 
profile 

-0.11 0.65 70.56 8 2.99 

Mixed Layer Constant 
at 1500m Min at 250 

-0.24 0.57 69.96 11 2.8 

Puff Growth Empirical -0.15 0.64 72.47 7 2.98 
Release 0m -0.15 0.64 71.77 8 2.97 
Release 100m -0.15 0.63 71.66 7 2.97 
Release 500m -0.17 0.63 71.95 8 2.95 
Release 1000m -0.20 0.62 71.95 7 2.93 
Release 2000m -1.59 0.49 70.39 21 1.94 
Release 5000m -2.0 0.0 0.0 100 0.0 

Wet Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations.  
Dry Deposition -0.75 0.54 72.47 13 2.51 

Wet & Dry Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Gaussian-Horizontal, 
Top Hat Vertical Puff 0.03 0.3 62.98 14 2.57 

Top Hat Horizontal & 
Vertical Puff -0.03 0.29 66.94 13 2.6 

Gaussian-Horizontal, 
Particle Vertical  0.02 0.43 63.73 7 2.75 

Top Hat Horizontal, 
Particle Vertical 0.01 0.41 67.55 9 2.75 

  
 Table 6: Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space (FMS), 

Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 from HYSPLIT 
using the WRF 3-km and 0.25⁰ x 0.25⁰ concentration grid.  The red blocks indicate the lowest scoring 

statistic in that column while the green blocks indicate the highest scoring statistic in that column.  
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WRF-9km 
0.25 x 0.25 Deg 

Concentration Grid 
Fractional 

Bias 
Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Control Case -0.16 0.66 70.73 6 3.01 

Isobaric -0.52 0.57 69.55 9 2.67 
Isentropic -0.39 0.60 72.25 16 2.72 
Constant Density -0.93 0.51 67.76 10 2.37 
Isosigma -0.37 0.58 69.68 7 2.78 
From Divergence -0.18 0.65 72.08 9 2.96 
Remap MSL to AGL -0.49 0.69 70.56 12 2.81 
Vertical From Average 
Data 

-0.21 0.66 71.43 7 2.98 

Damped Magnitude -0.30 0.64 71.26 6 2.92 
Vertical Turbulence - 
Beljaars-Holtslag  

0.55 0.58 71.01 10 2.67 

 Vertical Turbulence -  
Kanthar-Clayson 

-0.16 0.66 70.92 6 3.01 

Vertical Turbulence - 
TKE Field 

-0.13 0.63 70.68 6 2.99 

Vertical Turbulence - 
Variance 

-0.16 0.66 70.00 6 3.00 

Horizontal Turbulence - 
Velocity Deformation 

-0.07 0.41 70.46 11 2.72 

Horizontal Turbulence -  
Undefined – Defaulted 
to Velocity Deformation 

-0.07 0.41 70.46 11 2.72 

Horizontal Turbulence -
Variance 

-0.16 0.66 70.00 6 3.00 

BL Stability from U/T 
profile 

-0.17 0.79 68.97 3 3.19 

Vertical Mixing 
replaced by PBL 
average 

-0.30 0.55 73.44 8 2.81 

Mixed Layer from temp 
profile 

-0.12 0.63 71.95 7 2.99 

Mixed Layer from TKE 
profile 

-0.12 0.63 71.95 7 2.99 

Mixed Layer Constant 
at 1500m Min at 250 

-0.31 0.55 71.43 9 2.78 

Puff Growth Empirical -0.16 0.66 70.00 6 3.00 
Release 0m -0.16 0.66 70.92 6 3.01 
Release 100m -0.15 0.67 70.85 7 3.01 
Release 500m -0.18 0.66 70.59 7 2.98 
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Release 1000m -0.19 0.63 70.16 6 2.95 
Release 2000m -1.25 0.51 70.64 15 2.20 
Release 5000m -2.00 0.00 0.00 100 0.00 

Wet Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Dry Deposition -0.70 0.57 70.73 10 2.58 

Wet & Dry Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Gaussian-Horizontal, 
Top Hat Vertical Puff -0.17 0.28 64.73 15 2.49 

Top Hat Horizontal & 
Vertical Puff -0.06 0.24 64.73 14 2.53 

Gaussian-Horizontal, 
Particle Vertical  -0.13 0.42 63 6 2.68 

Top Hat Horizontal, 
Particle Vertical -0.16 0.51 68.85 5 2.82 

  
 
 
 
 
 

WRF-27km 
0.25 x 0.25 Deg 

Concentration Grid 
Fractional 

Bias 
Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Control Case -0.31 0.65 70.71 9 2.98 

Isobaric -0.49 0.60 69.62 12 2.69 
Isentropic -0.44 0.62 70.98 18 2.69 
Constant Density -0.89 0.55 69.53 13 2.42 
Isosigma -0.40 0.62 70.17 10 2.79 
From Divergence -0.69 0.63 72.29 11 2.67 
Remap MSL to AGL -0.52 0.66 69.29 11 2.76 
Vertical From Average 
Data 

-0.31 0.65 70.71 9 2.98 

Damped Magnitude -0.31 0.65 70.71 9 2.98 
Vertical Turbulence - 
Beljaars-Holtslag  

0.28 0.64 67.53 12 2.82 

 Vertical Turbulence -  
Kanthar-Clayson 

-0.31 0.65 70.95 9 2.98 

Vertical Turbulence - 
TKE Field 

-0.31 0.65 70.95 9 2.98 

Vertical Turbulence - 
Variance 

-0.31 0.65 70.95 9 2.98 

Table 7: Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space (FMS), 
Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 from HYSPLIT 
using the WRF 9-km and 0.25⁰ x 0.25⁰ concentration grid. The red blocks indicate the lowest scoring 

statistic in that column while the green blocks indicate the highest scoring statistic in that column.  
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Horizontal Turbulence - 
Velocity Deformation 

-0.22 0.43 68.83 14 2.63 

Horizontal Turbulence -  
Undefined – Defaulted 
to Velocity Deformation 

-0.22 0.43 68.83 14 2.63 

Horizontal Turbulence -
Variance 

-0.31 0.65 70.95 9 2.98 

BL Stability from U/T 
profile 

-0.47 0.73 66.23 16 2.80 

Vertical Mixing 
replaced by PBL 
average 

-0.42 0.54 71.37 10 2.70 

Mixed Layer from temp 
profile 

-0.26 0.65 69.26 9 2.90 

Mixed Layer from TKE 
profile 

-0.26 0.65 69.26 9 2.90 

Mixed Layer Constant 
at 1500m Min at 250 

-0.46 0.57 67.09 14 2.63 

Puff Growth Empirical -0.31 0.65 70.95 9 2.98 
Release 0m -0.32 0.66 71.25 9 2.90 
Release 100m -0.31 0.65 71.01 9 2.90 
Release 500m -0.32 0.64 71.13 9 2.88 
Release 1000m -0.35 0.63 68.57 9 2.82 
Release 2000m -1.16 0.47 69.13 15 2.18 
Release 5000m -2.00 0.00 0.00 100 0.00 

Wet Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Dry Deposition -0.76 0.55 70.71 14 2.49 

Wet & Dry Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Gaussian-Horizontal, 
Top Hat Vertical Puff -0.52 0.43 64.39 14 2.43 

Top Hat Horizontal & 
Vertical Puff -0.34 0.40 63.64 16 2.47 

Gaussian-Horizontal, 
Particle Vertical  -0.36 0.58 63.01 6 2.73 

Top Hat Horizontal, 
Particle Vertical -0.32 0.56 70.63 10 2.75 

 
 
 
 
 
 
 
 

Table 8: Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space (FMS), 
Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 from HYSPLIT 
using the WRF 27-km and 0.25⁰ x 0.25⁰ concentration grid. The red blocks indicate the lowest scoring 

statistic in that column while the green blocks indicate the highest scoring statistic in that column. 
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WRF-3km 
1.0 x 1.0 Deg 

Concentration Grid 
Fractional 

Bias 
Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Control Case -0.43 0.69 57.83 12 2.72 

Isobaric -0.73 0.66 58.95 7 2.59 
Isentropic -0.72 0.53 60.32 6 2.47 
Constant Density -0.99 0.51 59.19 7 2.29 
Isosigma -0.65 0.69 57.75 9 2.64 
From Divergence -0.39 0.66 59.38 11 2.73 
Remap MSL to AGL -0.56 0.67 58.54 9 2.66 
Vertical From Average 
Data 

-0.43 0.69 57.83 12 2.72 

Damped Magnitude -0.43 0.69 57.83 12 2.72 
Vertical Turbulence - 
Beljaars-Holtslag  

0.15 0.75 59.81 13 2.96 

 Vertical Turbulence -  
Kanthar-Clayson 

-0.43 0.69 57.83 12 2.72 

Vertical Turbulence - 
TKE Field 

-0.43 0.69 57.83 12 2.72 

Vertical Turbulence - 
Variance 

-0.43 0.69 57.83 12 2.72 

Horizontal Turbulence - 
Velocity Deformation 

-0.35 0.69 60.83 11 2.79 

Horizontal Turbulence -  
Undefined – Defaulted 
to Velocity 
Deformation 

-0.35 0.69 60.83 11 2.79 

Horizontal Turbulence -
Variance 

-0.43 0.69 57.83 12 2.72 

BL Stability from U/T 
profile 

-0.79 0.78 56.52 7 2.71 

Vertical Mixing 
replaced by PBL 
average 

-0.50 0.61 58.46 10 2.60 

Mixed Layer from temp 
profile 

-0.38 0.69 58.01 11 2.76 

Mixed Layer from TKE 
profile 

-0.38 0.69 58.01 11 2.76 

Mixed Layer Constant 
at 1500m Min at 250 

-0.48 0.65 59.87 7 2.71 

Puff Growth Empirical -0.43 0.69 57.83 12 2.72 
Release 0m -0.42 0.69 58.72 12 2.73 



www.manaraa.com

57 

Release 100m -0.41 0.69 57.88 12 2.73 
Release 500m -0.45 0.69 58.01 11 2.72 
Release 1000m -0.47 0.68 57.78 12 2.68 
Release 2000m -1.63 0.56 60.44 23 1.88 
Release 5000m -2.00 0.00 0.00 100 0.00 

Wet Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Dry Deposition -0.94 0.61 57.83 7 2.41 

Wet & Dry Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Gaussian-Horizontal, 
Top Hat Vertical Puff 0 0.16 61.02 9 2.55 

Top Hat Horizontal & 
Vertical Puff -0.08 0.13 64.84 8 2.55 

Gaussian-Horizontal, 
Particle Vertical  -0.53 0.15 57.58 8 2.26 

Top Hat Horizontal, 
Particle Vertical -0.50 0.11 62.37 8 2.31 

 
 
 
 
 
 

WRF-9km 
1.0 x 1.0 Deg 

Concentration 
Grid 

Fractiona
l Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Control Case -0.42 0.70 58.36 14 2.72 

Isobaric -0.67 0.67 59.08 8 2.62 
Isentropic -0.60 0.56 59.37 6 2.55 
Constant Density -0.97 0.52 59.06 7 2.31 
Isosigma -0.60 0.69 57.70 10 2.65 
From Divergence -0.43 0.70 59.69 12 2.75 
Remap MSL to AGL -0.73 0.72 59.02 6 2.68 
Vertical From 
Average Data 

-0.45 0.68 57.88 13 2.69 

Damped Magnitude -0.55 0.70 58.36 12 2.68 
Vertical Turbulence - 
Beljaars-Holtslag  

0.18 0.71 60.13 14 2.88 

 Vertical Turbulence -  
Kanthar-Clayson 

-0.42 0.70 60.13 14 2.72 

Table 9: Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space (FMS), 
Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 from HYSPLIT 

using the WRF 3-km and 1.0⁰ x 1.0⁰ concentration grid. The red blocks indicate the lowest scoring 
statistic in that column while the green blocks indicate the highest scoring statistic in that column. 
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Vertical Turbulence - 
TKE Field 

-0.42 0.70 58.36 14 2.72 

Vertical Turbulence - 
Variance 

-0.42 0.70 58.36 14 2.72 

Horizontal 
Turbulence - Velocity 
Deformation 

-0.35 0.66 59.94 13 2.74 

Horizontal 
Turbulence -  
Undefined – 
Defaulted to Velocity 
Deformation 

-0.35 0.66 59.94 13 2.74 

Horizontal 
Turbulence -Variance 

-0.42 0.70 58.36 14 2.72 

BL Stability from U/T 
profile 

-0.44 0.71 57.69 17 2.69 

Vertical Mixing 
replaced by PBL 
average 

-0.49 0.60 59.08 11 2.59 

Mixed Layer from 
temp profile 

-0.38 0.68 58.66 13 2.72 

Mixed Layer from 
TKE profile 

-0.38 0.68 58.66 13 2.72 

Mixed Layer Constant 
at 1500m Min at 250 

-0.54 0.65 59.56 7 2.68 

Puff Growth 
Empirical 

-0.42 0.70 58.36 14 2.72 

Release 0m -0.41 0.70 58.43 14 2.72 
Release 100m -0.41 0.69 58.08 13 2.73 
Release 500m -0.43 0.69 58.08 13 2.71 
Release 1000m -0.44 0.68 58.79 13 2.69 
Release 2000m -1.35 0.63 60.62 15 2.17 
Release 5000m -2 0 0 100 0 

Wet Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Dry Deposition -0.87 0.61 58.36 6 2.46 
Wet & Dry 
Deposition 

Could not complete because meteorological data does not have 
precipitation field required to complete calculations. 

Gaussian-Horizontal, 
Top Hat Vertical Puff -0.16 0.08 62.07 5 2.50 

Top Hat Horizontal & 
Vertical Puff -0.13 0.09 65.31 7 2.53 

Gaussian-Horizontal, 
Particle Vertical  -0.43 0.11 57.88 10 2.28 

Top Hat Horizontal, 
Particle Vertical -0.46 0.20 62.50 11 2.32 

 
Table 10: Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space (FMS), 

Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 from HYSPLIT 
using the WRF 9-km and 1.0⁰ x 1.0⁰ concentration grid. The red blocks indicate the lowest scoring statistic 

in that column while the green blocks indicate the highest scoring statistic in that column. 
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WRF-27km 
1.0 x 1.0 Deg 

Concentration 
Grid 

Fractiona
l Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Control Case -0.55 0.65 60.12 10 2.65 

Isobaric -0.69 0.67 60.51 5 2.66 
Isentropic -0.65 0.49 61.26 9 2.44 
Constant Density -0.97 0.53 60.38 7 2.32 
Isosigma -0.66 0.70 59.87 7 2.68 
From Divergence -0.86 0.65 60.57 8 2.52 
Remap MSL to AGL -0.74 0.66 58.77 7 2.58 
Vertical From 
Average Data 

-0.55 0.65 60.12 10 2.65 

Damped Magnitude -0.55 0.65 60.12 10 2.65 
Vertical Turbulence - 
Beljaars-Holtslag  

-0.06 0.69 60.39 13 2.93 

 Vertical Turbulence -  
Kanthar-Clayson 

-0.55 0.65 60.12 10 2.65 

Vertical Turbulence - 
TKE Field 

-0.55 0.65 60.12 10 2.65 

Vertical Turbulence - 
Variance 

-0.55 0.65 60.12 10 2.65 

Horizontal 
Turbulence - Velocity 
Deformation 

-0.51 0.64 60.59 10 2.67 

Horizontal 
Turbulence -  
Undefined – 
Defaulted to Velocity 
Deformation 

-0.51 0.64 60.59 10 2.67 

Horizontal 
Turbulence -Variance 

-0.55 0.65 60.12 10 2.65 

BL Stability from U/T 
profile 

-0.91 0.61 60.00 9 2.43 

Vertical Mixing 
replaced by PBL 
average 

-0.61 0.56 59.44 10 2.51 

Mixed Layer from 
temp profile 

-0.51 0.64 59.44 11 2.64 
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Mixed Layer from 
TKE profile 

-0.51 0.64 59.44 11 2.64 

Mixed Layer Constant 
at 1500m Min at 250 

-0.65 0.61 61.22 6 2.6 

Puff Growth 
Empirical 

-0.55 0.65 60.12 10 2.65 

Release 0m -0.55 0.65 59.02 10 2.64 
Release 100m -0.55 0.65 59.57 10 2.64 
Release 500m -0.56 0.64 58.72 10 2.62 
Release 1000m -0.58 0.63 59.08 10 2.6 
Release 2000m -1.3 0.55 61.11 14 2.13 
Release 5000m -2.00 0.00 0.00 100 0 

Wet Deposition 
Could not complete because meteorological data does not have 

precipitation field required to complete calculations. 
Dry Deposition -0.92 0.56 60.12 6 2.4 
Wet & Dry 
Deposition 

Could not complete because meteorological data does not have 
precipitation field required to complete calculations. 

Gaussian-Horizontal, 
Top Hat Vertical Puff -0.55 0.26 62.63 5 2.37 

Top Hat Horizontal & 
Vertical Puff -0.43 0.27 64.07 6 2.44 

Gaussian-Horizontal, 
Particle Vertical  -0.59 0.41 59.19 8 2.38 

Top Hat Horizontal, 
Particle Vertical -0.60 0.29 63.76 7 2.35 

 
 
 
 
 

The parameterizations included in the meteorological model and the 

parameterizations prescribed in HYSPLIT are a significant source of error. In Tables 6-

11, the green highlighted boxes coincide with the highest performing parameterizations, 

while the red boxes align with the lowest performing parameterizations. In the CAPTEX2 

control case, the tracer was released from 10m above ground, the vertical motion and 

boundary layer stability was determined from the inputted WRF model, all remaining 

parameters (i.e. turbulence, mixing layer etc.) were set to the model’s defaults (see 

background section for default configurations). Across all runs the simulations with the 

Table 11: Fractional Bias (FB), Correlation Coefficient (CC), Figure of Merit in Space (FMS), 
Kolmogorov-Smirnov Parameter (KSP), and Final Rank computed for the CAPTEX2 from HYSPLIT 
using the WRF 27-km and 1.0⁰ x 1.0⁰ concentration grid. The red blocks indicate the lowest scoring 
statistic in that column while the green blocks indicate the highest scoring statistic in that column. 
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following parameterizations performed well include: mapping the boundary layer from 

the UT profile, determining vertical turbulence using either the Kanthar-Clayson 

approach or Beljaars-Holtslag approach, and mapping the mixed layer from the 

temperature profile.  

Of the six sets of runs, the highest ranking model configuration was using a 0.25⁰ 

x 0.25⁰ concentration grid coupled with the 9-km WRF, approximating the boundary 

layer conditions from the UT profile (Rank: 3.19). Stability from profiles, such as that 

from the UT profile, are instantaneous values that are valid at the model’s time step (Air 

Resource Laboratory 2018). On the other hand, stabilities derived from flux, such as that 

from the YSU scheme in the WRF model, are based upon time-averaged heat and 

momentum fluxes. The YSU scheme is a non-local scheme; meaning that communication 

between PBL layers is unrestricted. This means each layer communicates the physical 

states each other. Each layer to know the state the physical states of all of the other 

layers. This allows deeper mixing of energy from the free atmosphere above the PBL into 

the layers within the PBL, resulting in a more realistic daytime PBL height when 

compared to local PBL schemes (Cohen et al. 2015). 

These results are consistent with the work on source term estimation of 

atmospheric pollutants. The planetary boundary layer schemes in meteorological models 

utilized in HYSPLIT simulations significantly impacts the source term estimation 

outcome (Zoellick 2019). Representing the planetary boundary layer accurately is crucial 

in long range transport and dispersion releases such as CAPTEX. Most of the dispersion 

of the CAPTEX plume occurs in the planetary boundary layer. Although the boundary 

layer stability from the UT profile proved to be the most fruitful parameterization in this 



www.manaraa.com

62 

research, there is no single right answer that applies to all cases. The stability profile 

chosen depends upon the frequency of the meteorological data, the time duration of the 

flux integral and meteorological conditions (Air Resource Laboratory 2018). 

 Excluding releases of the pollutant from heights other than at the surface, the 

lowest ranking model configuration was using 1) a 1.0⁰ x 1.0⁰ concentration grid with the 

3-km WRF coupled with a Top-Hat concentration distribution with the emission treated 

as a series of particles (Rank: 2.31) and 2) the a 1.0⁰ x 1.0⁰ concentration grid with the 3-

km WRF coupled with the vertical motion parameterized using a constant density field 

(Rank: 2.31). The Top-Hat concentration distribution with the emission treated as a series 

of particle, fails to more accurately capture the expansion of the pollutant plume due to 

the dispersive nature of the atmosphere compared to model default approach. The default 

approach uses particle dispersion in the vertical direction and puff dispersion in the 

horizontal (Draxler 1998). This allows for particles to be used in the vertical, where 

discontinuities may be large, and puffs in the horizontal (and subsequently puff-splitting) 

to limit the number of particles that are required to adequately represent the horizontal 

distribution (Draxler 1998).   Displays of the concentration plume for the control case 

(using the 9-km WRF on a 0.25⁰ x 0.25⁰ concentration grid), boundary layer stability 

from UT profile parameterization, and constant density parameterization are seen in 

Figures 13-15. 
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Figure 13: The Control Case: HYSPLIT representation of the PMCH cloud using the 9-km WRF and 0.25⁰ 
x 0.25⁰ concentration grid. The pollutant was released from Dayton, OH at 1705 UTC on 25 Sep 1983. The 
concentration distribution (in pg/m3) is displayed in each panel with the maximum concentration location 
indicated by the red dot. The time steps of the panels are: 1800 UTC on 25 Sep (a), 0600 UTC on 26 Sep 

(b), 1800 UTC on 26 Sep (c), 0600 UTC on 27 Sep (d), and 1800 UTC on 27 Sep (e). 
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c

 

e

 



www.manaraa.com

64 

  

 
 

 
 

 

 

Figure 14: The Highest Ranking Case: HYSPLIT representation of the PMCH cloud using the boundary 
layer stability computed by the UT profile parameterization using the 9-km WRF and 0.25⁰ x 0.25⁰ 
concentration grid. The pollutant was released from Dayton, OH at 1705 UTC on 25 Sep 1983. The 

concentration distribution (in pg/m3) is displayed in each panel with the maximum concentration location 
indicated by the red dot. The time steps of the panels are: 1800 UTC on 25 Sep (a), 0600 UTC on 26 Sep 

(b), 1800 UTC on 26 Sep (c), 0600 UTC on 27 Sep (d), and 1800 UTC on 27 Sep (e). 
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  Figure 15: The Lowest Ranking Case: HYSPLIT representation of the PMCH cloud using the vertical 
motion determined from constant density field parameterization using the 3-km nested WRF and 1.0⁰ x 1.0⁰ 

concentration grid. The pollutant was released from Dayton, OH at 1705 UTC on 25 Sep 1983. The 
concentration distribution (in pg/m3) is displayed in each panel with the maximum concentration location 

indicated by the red dot. The time steps of the panels are: 1800 UTC on 25 Sep (a), 0600 UTC on 26 Sep (b), 
1800 UTC on 26 Sep (c), 0600 UTC on 27 Sep (d), and 1800 UTC on 27 Sep (e). The lowest ranking case 

here is tied to the Top Hat Particle Parameterization case (not shown). 
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CAPTEX Timing Spread Results 

 Onset timing of the predicted concentration at each station is compared to the 

CAPTEX measured concentrations in Figures 16 - 21. The timing error spread of all 

parameterization schemes in the 1.0⁰ x 1.0⁰ (Figures 16,17 and 18)  and 0.25⁰  x 0.25⁰  

concentration grid (Figures 19, 20, and 21) and 3-km, 9-km, and 27-km WRF runs, 

organized by distance away from release site (a) and elevation (b). Negative timing error 

indicates HYSPLIT brought plume too early to the station while positive indicates 

HSYPLIT brought plume too late. Across all runs, timing uncertainty increases as the 

plume interacts with regions of varying terrain (a). On the other hand, there is no major 

importance on the elevation of the station (b). Table 12 portrays the spread in onset 

timing at across all simulations in each set.  

 

 

 

Figure 16: Onset timing spread of 1.0⁰ x 1.0⁰ concentration grid with 3-km WRF by distance away 
from release site and elevation. 
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b
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Figure 17: Onset timing spread of 1.0⁰ x 1.0⁰ concentration grid with 9-km WRF by distance away 
from release site and elevation. 

Figure 18: Onset timing spread of 1.0⁰ x 1.0⁰ concentration grid with 27-km WRF by distance 
away from release site and elevation. 
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Figure 20: Onset timing spread of 0.25⁰ x 0.25⁰ concentration grid with 9-km WRF by distance 
away from release site and elevation. 

Figure 19: Onset timing spread of 0.25⁰ x 0.25⁰ concentration grid with 3-km WRF by distance 
away from release site and elevation. 
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Model Onset Timing Spread 
Model Configuration  Onset Timing Spread 

WRF 3 km & 0.25⁰ x 0.25⁰ Conc. Grid   -18 hrs to +21 hrs 
WRF 9 km & 0.25⁰ x 0.25⁰ Conc. Grid   -12 hrs to +18 hrs 
WRF 27 km & 0.25⁰ x 0.25⁰ Conc. Grid   -12 hrs to +21 hrs 
WRF 3 km & 1.0⁰ x 1.0⁰ Conc. Grid   -18 hrs to +18 hrs 
WRF 9 km & 1.0⁰ x 1.0⁰ Conc. Grid   -18 hrs to +21 hrs 
WRF 27 km & 1.0⁰ x 1.0⁰ Conc. Grid   -18 hrs to +21 hrs 

 

 

HYSPLIT Success Rate  

A hit (successful forecast) is defined as HYSPLIT predicting PMCH 

concentrations greater than 0 pg/m3 for the entire CAPTEX data set (2244 observations).  

HYPLIT had a plume detection success rate average of 98.07% across all runs, with the 

1.0⁰ x 1.0⁰ concentration grid having a slightly higher rate (99.0%) compared to the 0.25⁰ 

x 0.25⁰ grid (96%), with respect to the 86 sensors. The success rate is the percentage of 

Figure 21: Timing error spread of 0.25⁰ x 0.25⁰ concentration grid with 27-km WRF by distance 
away from release site and elevation. 

Table 12:  Onset timing error spread across all simulations in each set. Negative timing error indicates 
HYSPLIT brought plume too early while positive timing error indicates HSYPLIT brought plume too late. 

a

 

b
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observations predicted by the model compared to the measured CAPTEX data. Only 

concentrations greater than 0 pg/m3 measured during the CAPTEX campaign were used.  

Model Success Rate 
Model Configuration  Percentage of Predicted vs. 

Measured Concentrations 
WRF 3-KM & 0.25⁰ x 0.25⁰ Conc. Grid   (2158/2244) 96.16%  
WRF 9-KM & 0.25⁰ x 0.25⁰ Conc. Grid   (2159/2244) 96.21% 
WRF 27-KM & 0.25⁰ x 0.25⁰ Conc. Grid   (2191/2244) 97.63% 
WRF 3-KM & 1.0⁰ x 1.0⁰ Conc. Grid   (2243/2244) 99.95% 
WRF 3-KM & 1.0⁰ x 1.0⁰ Conc. Grid   (2227/2244) 99.24% 
WRF 3-KM & 1.0⁰ x 1.0⁰ Conc. Grid   (2228/2244) 99.28%  

 

Nuclear Fallout Statistical Results: 

 The nuclear fallout simulations saw little spread in the five statistics within each 

detonation. Vertical turbulence & concentration distribution have little effect on 

uncertainty of the plume while changes in vertical motion parameterizations have most 

significant effect on uncertainty. The figure of merit in space (FMS), a score that 

provides a quantitative measure of the overlap of the modeled and observed plume 

segments, is shown in Table 14. A complete list of the statistical values can be found in 

Appendix C.  

 

Figure of Merit In Space Range 

Annie Easy Harry Simon Smoky Sugar 

70.0% - 87.5% 58.82% - 85.29% 66.67% - 

73.81% 

87.27% - 92.73% 27.37% - 35.79% 65.0% - 

72.5% 

 

Table 13: HYSPLIT success rates of CAPTEX2 ensembles 

Table 14: HYSPLIT FMS score spread for nuclear detonation ensembles 
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V. Conclusions and Recommendations 

 
Chapter Overview: 
 

The purpose of this chapter is to state the conclusions of this research and 

recommend further research to further quantify uncertainty in atmospheric transport and 

dispersion modeling. Conclusions are made from the analysis and results in Chapter IV 

above. 

Conclusion of Research: 
 
 The key findings from this research are: 
 
1.  The meteorology model and its horizontal resolution have the greatest impact on 

uncertainty.  

2.  HYSPLIT’s concentration grid should be determined (optimized) based on the 

meteorology model ingested into HYSPLIT.  

3.  In long range transport and dispersion, such as in the CAPTEX cases, vertical 

turbulence & boundary layer stability parameterizations proved fruitful in minimizing 

uncertainty.  

4.  In long range transport and dispersion, the parameterizations that have a negative 

impact on the transport and dispersion include: vertical motion mapped from constant 

density, assuming a Gaussian concentration distribution, and emissions simulated 

using a particle approach.   

5.  Timing uncertainty is greatest regions of varying terrain.  

6.  In nuclear cases, the figure of merit in space proved to be the most significant statistic 

to quantify uncertainty.  
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Recommendation for Future Research:  

This project reveals that although there are ways to minimize and uncover 

uncertainty in transport and dispersion simulations there is still further research needed to 

fully understand and quantify uncertainty. One focus of future research is to complete an 

ensemble varying not only meteorology model ingested into HYSPLIT, but also finer 

model resolutions. The meteorological model chosen proved to have the greatest impact 

on uncertainty. It is recommended the meteorological model chosen be selected based on 

its forecasting success rate for the area of interest.  

Another potential research opportunity in this field is to predict uncertainty in 

transport and dispersion modeling through the use of a Monte Carlo simulation. In this 

approach each parameter is selected either from independent distributions or from 

multivariate distributions specified by a covariance matrix (Rao 2005). From there the 

contribution of each parameter to model uncertainty is determined by statistical analysis 

of each simulation’s results. The correlation coefficient statistics comparing each input 

parameter and the model output from each Monte Carlo simulation may prove to be the 

most relevant approach to rank each parameter’s impact on the total uncertainty within 

the model run (Rao 2005). 

Moreover, it is recommended future research should be conducted to create a 

Meteorology Complex Factor (MCF) to quantify the meteorology model’s impact on 

uncertainty. This concept was first tested by Jonathan D. W. Kahl from the University of 

Wisconsin on his work on predicting trajectory model error (Kahl 1995). In his research 

the MCF describes the dispersion of stochastically generated trajectory positions 

compared to a reference trajectory calculation. To determine a MCF, a reference 
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trajectory must first be calculated. From there an ensemble of trajectories can be 

produced (using the Monte Carlo technique) using perturbed wind fields or varying 

parameterizations. The MCF could then be used to compare the stochastic (perturbed) 

trajectories to the reference trajectory. The perturbed wind components are computed by: 

     𝑢𝑢𝑡𝑡 = 𝑢𝑢 +  𝑢𝑢𝑚𝑚                                                    (45) 

     𝑣𝑣𝑡𝑡 = 𝑣𝑣 +  𝑣𝑣𝑚𝑚                                             (46) 

where 𝑢𝑢 and 𝑣𝑣 are the unperturbed horizontal wind components used to compute the 

initial reference trajectory and 𝑢𝑢𝑚𝑚 and 𝑣𝑣𝑚𝑚 are Gaussian random variables with means of 

zero and standard deviations of 3.0 m/s (Kahl 1995). Once an ensemble of perturbed 

trajectories or ensemble of varying parameterizations is completed the MCF can be 

calculated by:  

    𝑀𝑀𝐶𝐶𝐹𝐹(𝑡𝑡) =  [∑ 𝑑𝑑𝑓𝑓(𝑡𝑡)𝑓𝑓 ]/𝑁𝑁                                          (47) 

where 𝑑𝑑𝑓𝑓(𝑡𝑡) is the distance between the stochastic trajectory position at time to the 

reference trajectory position, and 𝑁𝑁 is the number of stochastic trajectories generated 

(recommended 1000). A second approach to the MCF is to add the timing error across all 

runs within a meteorological ensemble. In this research, the researcher would add the 

timing error at all stations for all parameterizations in the 3-km, 9-km, and 27-km WRF 

runs separately (regardless of the concentration grid) and divide by the total number of 

runs completed using that meteorological model (60 in this research). This MCF is tested 

for this research using equation 48 with the results below:   

                                              𝑀𝑀𝐶𝐶𝐹𝐹(𝑡𝑡) =  [∑ 𝑡𝑡]/𝑁𝑁                                        (48) 

3-kmWRF: (19,428hrs/54) = 359.77 
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9-km WRF: (19,683hrs/54) = 364.50 

27km- WRF: (21,324hrs/54) = 394.88 

      The last focus for future research is to investigate further affects of vertical & 

horizontal turbulence and planetary boundary layer parameterizations on atmospheric 

transport and dispersion modeling. The turbulent eddies and motions located in the 

boundary layer have the most impact on the resulting motion of a pollutant. These 

parameterizations should be studied under various meteorological conditions to 

determine rules of thumb by which parameter performs the best for each weather 

condition. 

Summary: 

 HYSPLIT ensembles of the CAPTEX campaign and stabilized nuclear fallout 

cases were useful in identifying and quantifying uncertainty in atmospheric dispersion 

model predictions. Uncertainty in these simulations directly linked to: 1) the 

meteorological model data ingested into the HYSPLIT (due to horizontal resolution and 

associated parameterizations), 2) HYSPLIT’s internal parameterizations, and 3) the 

stochastic uncertainty associated with the turbulent nature of the atmosphere. Future work 

is required to understand these factors further and develop new ways to communicate this 

uncertainty.  
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Appendix A: Nuclear Fallout Statistics  

Upshot-Knothole Simon 

Parameterization  Fractional 
Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Isobaric 0.32 0.54 87.27 51 2.50 
Isentropic 0.45 0.55 90.91 42 2.57 
Constant Density 0.27 0.55 89.09 49 2.57 
Isosigma 0.32 0.54 92.73 56 2.49 
Divergence 0.27 0.54 92.73 54 2.54 
MSL to AGL 0.27 0.57 90.91 49 2.61 
Average Data 0.29 0.56 92.73 52 2.58 
Damped Magnitude 0.29 0.56 92.73 52 2.58 
Control Case 0.29 0.56 92.73 52 2.58 
BL Stability From UT 
Profile 0.29 0.56 92.73 52 2.58 

Vertical Mixing 
replaced By PBL 
Average 

0.30 0.57 92.73 48 2.62 

Vertical Turbulence 
Beljaars Holtslag 0.27 0.53 90.91 55 2.51 

Vertical Turbulence 
Kanthar-Clayson 0.29 0.56 92.73 52 2.58 

Vertical Turbulence 
From TKE Field 0.29 0.56 92.73 52 2.58 

Horizontal Turbulence 
From Variance 0.29 0.56 92.73 52 2.58 

Gaussian Horizontal 
Top Hat Vertical Puff 0.29 0.56 92.73 52 2.58 

Top Hat Horizontal 
Vertical Puff 0.29 0.56 92.73 52 2.58 

Gaussian Horizontal 
Particle Vertical 0.29 0.56 92.73 52 2.58 

Top Hat Horizontal 
Particle Vertical 0.29 0.56 92.73 52 2.58 

Puff Growth Empirical  0.29 0.56 92.73 52 2.58 
Horizontal Turbulence 
From Velocity 
Deformation 

0.39 0.59 96.36 51 2.61 

Horizontal Turbulence 
Undefined – Defaulted 
to Velocity 
Deformation 

0.39 0.59 96.36 51 2.61 

Mixed Layer Constant 
at 1500m 0.29 0.53 92.73 55 2.51 
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Mixed Layer From 
Temperature 0.29 0.56 92.73 52 2.58 

Mixed Layer From 
TKE Field 0.29 0.56 92.73 52 2.58 

 

Plumbbob Smoky 

Parameterization Fractional 
Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Isobaric -0.13 0.29 27.37 69 1.45 
Isentropic -0.10 0.19 12.63 84 1.20 
Constant Density -0.13 0.26 26.32 70 1.45 
Isosigma -0.13 0.25 26.32 70 1.45 
Divergence -0.13 0.29 27.37 70 1.44 
MSL to AGL -0.13 0.29 25.26 70 1.43 
Average Data -0.13 0.32 27.37 70 1.43 
Damped Magnitude -0.13 0.32 27.37 70 1.43 
Control Case -0.13 0.32 27.37 70 1.43 
BL Stability From UT 
Profile -0.13 0.32 27.37 70 1.43 

Vertical Mixing 
replaced By PBL 
Average 

-0.13 0.31 27.37 70 1.44 

Vertical Turbulence 
Beljaars Holtslag -0.13 0.31 25.26 70 1.42 

Vertical Turbulence 
Kanthar-Clayson -0.13 0.32 27.37 70 1.43 

Vertical Turbulence 
From TKE Field -0.13 0.32 27.37 70 1.43 

Horizontal Turbulence 
From Variance -0.13 0.32 27.37 70 1.43 

Gaussian Horizontal 
Top Hat Vertical Puff -0.13 0.32 27.37 70 1.43 

Top Hat Horizontal 
Vertical Puff -0.13 0.32 27.37 70 1.43 

Gaussian Horizontal 
Particle Vertical -0.13 0.32 27.37 70 1.43 

Top Hat Horizontal 
Particle Vertical -0.13 0.32 27.37 70 1.43 

Puff Growth Empirical  -0.13 0.32 27.37 70 1.43 
Horizontal Turbulence 
From Velocity 
Deformation 

-0.14 0.28 35.79 61 1.63 

Horizontal Turbulence 
Undefined – Defaulted -0.14 0.28 35.79 61 1.63 
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to Velocity 
Deformation 
Mixed Layer Constant 
at 1500m -0.13 0.31 25.26 70 1.42 

Mixed Layer From 
Temperature -0.13 0.32 27.37 70 1.43 

Mixed Layer From 
TKE Field -0.13 0.32 27.37 70 1.43 

 

Buster-Jangle Sugar 

Parameterization Fractional 
Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Isobaric -0.94 0.27 67.5 63 1.65 
Isentropic -1.05 0.24 72.5 63 1.63 
Constant Density -0.98 0.28 67.5 63 1.63 
Isosigma -0.99 0.25 67.5 63 1.61 
Divergence -0.95 0.27 67.5 65 1.62 
MSL to AGL -0.99 0.22 62.5 60 1.58 
Average Data -1.03 0.21 67.5 63 1.57 
Damped Magnitude -1.03 0.21 67.5 63 1.57 
Control Case -1.03 0.21 67.5 63 1.57 
BL Stability From UT 
Profile -1.03 0.21 67.5 63 1.57 

Vertical Mixing 
replaced By PBL 
Average 

-1.03 0.24 65 63 1.56 

Vertical Turbulence 
Beljaars Holtslag -0.99 0.24 65 63 1.61 

Vertical Turbulence 
Kanthar-Clayson -1.03 0.21 67.5 63 1.57 

Vertical Turbulence 
From TKE Field -1.03 0.21 67.5 63 1.57 

Horizontal Turbulence 
From Variance -1.03 0.21 67.5 63 1.57 

Gaussian Horizontal 
Top Hat Vertical Puff -1.03 0.21 67.5 63 1.57 

Top Hat Horizontal 
Vertical Puff -1.03 0.21 67.5 63 1.57 

Gaussian Horizontal 
Particle Vertical -1.03 0.21 67.5 63 1.57 

Top Hat Horizontal 
Particle Vertical -1.03 0.21 67.5 63 1.57 

Puff Growth Empirical  -1.03 0.21 67.5 63 1.57 



www.manaraa.com

78 

Horizontal Turbulence 
From Velocity 
Deformation 

-1.04 0.26 67.5 63 1.59 

Horizontal Turbulence 
Undefined – Defaulted 
to Velocity 
Deformation 

-1.04 0.26 67.5 63 1.59 

Mixed Layer Constant 
at 1500m -1.00 0.21 67.5 63 1.59 

Mixed Layer From 
Temperature -1.03 0.21 67.5 63 1.57 

Mixed Layer From 
TKE Field -1.03 0.21 67.5 63 1.57 

 

 
Tumbler-Snapper Easy 

Parameterization Fractional 
Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Isobaric 0.15 0.73 85.29 50 2.81 

Isentropic -0.31 0.56 58.82 56 2.19 

Constant Density 0.15 0.72 85.29 53 2.77 

Isosigma 0.11 0.72 85.29 53 2.79 

Divergence 0.16 0.73 85.29 53 2.78 

MSL to AGL 0.01 0.71 85.29 59 2.76 

Average Data 0.06 0.71 85.29 59 2.74 

Damped Magnitude 0.06 0.71 85.29 59 2.74 

Control Case 0.06 0.71 85.29 59 2.74 

BL Stability From UT 
Profile 

0.06 0.71 85.29 59 2.74 

Vertical Mixing 
replaced By PBL 
Average 

0.06 0.71 85.29 59 2.74 

Vertical Turbulence 
Beljaars Holtslag 

0.01 0.72 85.29 59 2.77 

Vertical Turbulence 
Kanthar-Clayson 

0.06 0.71 85.29 59 2.74 
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Vertical Turbulence 
From TKE Field 

0.06 0.71 85.29 59 2.74 

Horizontal Turbulence 
From Variance 

0.06 0.71 85.29 59 2.74 

Gaussian Horizontal 
Top Hat Vertical Puff 

0.06 0.71 85.29 59 2.74 

Top Hat Horizontal 
Vertical Puff 

0.06 0.71 85.29 59 2.74 

Gaussian Horizontal 
Particle Vertical 

0.06 0.71 85.29 59 2.74 

Top Hat Horizontal 
Particle Vertical 

0.06 0.71 85.29 59 2.74 

Puff Growth Empirical  0.06 0.71 85.29 59 2.74 

Horizontal Turbulence 
From Velocity 
Deformation 

0.01 0.72 85.29 56 2.81 

Horizontal Turbulence 
Undefined – Defaulted 
to Velocity 
Deformation 

0.01 0.72 85.29 56 2.81 

Mixed Layer Constant 
at 1500m 

0.04 0.71 85.29 56 2.77 

Mixed Layer From 
Temperature 

0.06 0.71 85.29 59 2.74 

Mixed Layer From 
TKE Field 

0.06 0.71 85.29 59 2.74 

 
 
 

Upshot-Knothole Annie 

Parameterization Fractional 
Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Isobaric -0.28 -0.21 77.50 35 2.33 
Isentropic -0.19 -0.23 70.00 43 2.23 
Constant Density -0.24 -0.21 77.50 40 2.30 
Isosigma -0.24 -0.21 77.50 37 2.33 
Divergence -0.29 -0.21 77.50 37 2.30 
MSL to AGL -0.21 -0.22 77.50 37 2.35 
Average Data -0.18 -0.22 77.50 35 2.38 
Damped Magnitude -0.18 -0.22 77.50 35 2.38 
Control Case -0.18 -0.22 77.50 35 2.38 
BL Stability From UT 
Profile -0.18 -0.22 77.50 35 2.38 
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Vertical Mixing 
replaced By PBL 
Average 

-0.26 -0.22 77.50 38 2.31 

Vertical Turbulence 
Beljaars Holtslag -0.25 -0.21 80.00 35 2.37 

Vertical Turbulence 
Kanthar-Clayson -0.18 -0.22 77.50 35 2.38 

Vertical Turbulence 
From TKE Field -0.18 -0.22 77.50 35 2.38 

Horizontal Turbulence 
From Variance -0.18 -0.22 77.50 35 2.38 

Gaussian Horizontal 
Top Hat Vertical Puff -0.18 -0.22 77.50 35 2.38 

Top Hat Horizontal 
Vertical Puff -0.18 -0.22 77.50 35 2.38 

Gaussian Horizontal 
Particle Vertical -0.18 -0.22 77.50 35 2.38 

Top Hat Horizontal 
Particle Vertical -0.18 -0.22 77.50 35 2.38 

Puff Growth Empirical  -0.18 -0.22 77.50 35 2.38 
Horizontal Turbulence 
From Velocity 
Deformation 

-0.25 -0.21 87.50 33 2.46 

Horizontal Turbulence 
Undefined – Defaulted 
to Velocity 
Deformation 

-0.25 -0.21 87.50 33 2.46 

Mixed Layer Constant 
at 1500m -0.26 -0.21 77.50 38 2.31 

Mixed Layer From 
Temperature -0.18 -0.22 77.50 35 2.38 

Mixed Layer From 
TKE Field -0.18 -0.22 77.50 35 2.38 

 
 

Upshot-Knothole Harry 

Parameterization Fractional 
Bias 

Correlation 
Coefficient 

Figure of 
Merit in 
Space 

Kolmogorov-
Smirnov 

Parameter 

Final 
Rank 

Isobaric -0.97 -0.11 72.62 40 1.85 
Isentropic -1.05 -0.14 67.86 46 1.72 
Constant Density -0.94 -0.13 73.81 40 1.88 
Isosigma -0.97 -0.12 70.24 42 1.82 
Divergence -0.98 -0.13 66.67 42 1.77 
MSL to AGL -0.96 -0.12 73.81 42 1.85 
Average Data -1.00 -0.11 67.86 42 1.77 
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Damped Magnitude -1.00 -0.11 67.86 42 1.77 
Control Case -1.00 -0.11 67.86 42 1.77 
BL Stability From UT 
Profile -1.00 -0.11 67.86 42 1.77 

Vertical Mixing 
replaced By PBL 
Average 

-0.97 -0.12 66.67 42 1.78 

Vertical Turbulence 
Beljaars Holtslag -1.00 -0.13 65.48 42 1.75 

Vertical Turbulence 
Kanthar-Clayson -1.00 -0.11 67.86 42 1.77 

Vertical Turbulence 
From TKE Field -1.00 -0.11 67.86 42 1.77 

Horizontal Turbulence 
From Variance -1.00 -0.11 67.86 42 1.77 

Gaussian Horizontal 
Top Hat Vertical Puff -1.00 -0.11 67.86 42 1.77 

Top Hat Horizontal 
Vertical Puff -1.00 -0.11 67.86 42 1.77 

Gaussian Horizontal 
Particle Vertical -1.00 -0.11 67.86 42 1.77 

Top Hat Horizontal 
Particle Vertical -1.00 -0.11 67.86 42 1.77 

Puff Growth Empirical  -1.00 -0.11 67.86 42 1.77 
Horizontal Turbulence 
From Velocity 
Deformation 

-0.98 -0.13 73.81 43 1.83 

Horizontal Turbulence 
Undefined – Defaulted 
to Velocity 
Deformation 

-0.98 -0.13 73.81 43 1.83 

Mixed Layer Constant 
at 1500m -0.99 -0.12 70.24 43 1.79 

Mixed Layer From 
Temperature -1.00 -0.11 67.86 42 1.77 

Mixed Layer From 
TKE Field -1.00 -0.11 67.86 42 1.77 
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